JA

Profile

Research

Social

Other

Nakagawa Takuro

中川 拓郎

Graduate School of Science Department of Biological Sciences, Associate Professor

nakagawa.takuro.sci osaka-u.ac.jp

keyword Gross chromosomal rearrangement,DNA replication,fission yeast,centromere,chromosome,DNA recombination

Education

  • 1995/04 - 1998/03, Osaka University, Graduate School of Science
  • 1993/04 - 1995/03, Osaka University, Graduate School of Science
  • 1989/04 - 1993/03, Osaka University, School of Science

Research History

  • 2011/02 - Present, Osaka University, Graduate School of Science, Associate Professor
  • 2007/04 - 2011/01, Osaka University, Graduate School of Science, Assistant Professor
  • 2000/08 - 2007/03, Osaka University, Graduate School of Science, Assistant Professor
  • 1998/05 - 2000/07, University of California San Diego (UCSD), Ludwig Institute for Cancer Research, Postdoctoral Fellow

Research Areas

  • Life sciences, Molecular biology
  • Life sciences, Genetics

Professional Memberships

  • THE GENETICS SOCIETY OF JAPAN
  • 日本分子生物学会

Papers

  • Gross chromosomal rearrangement at centromeres, Ran Xu,Ziyi Pan,Takuro Nakagawa, Biomolecules, Vol. 14, No. 1, 2024/01
  • Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere, Piyusha Mongia,Naoko Toyofuku,Ziyi Pan,Ran Xu,Yakumo Kinoshita,Keitaro Oki,Hiroki Takahashi,Yoshitoshi Ogura,Tetsuya Hayashi,Takuro Nakagawa, Communications Biology, Vol. 6, No. 1, p. 551-551, 2023/05/26
  • Fission yeast Rad8/HLTF facilitates Rad52-dependent chromosomal rearrangements through PCNA lysine 107 ubiquitination., Jie Su,Ran Xu,Piyusha Mongia,Naoko Toyofuku,Takuro Nakagawa, PLoS Genetics, Vol. 17, No. 7, 2021/07
  • DNA replication machinery prevents Rad52-dependent single-strand annealing that leads to gross chromosomal rearrangements at centromeres., Atsushi T Onaka,Jie Su,Yasuhiro Katahira,Crystal Tang,Faria Zafar,Keita Aoki,Wataru Kagawa,Hironori Niki,Hiroshi Iwasaki,Takuro Nakagawa, Communications Biology, Vol. 3, No. 1, p. 202-202, 2020/04/30
  • Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity., Nakagawa T,Okita AK, Current Genetics, Springer Nature, Vol. 65, No. 5, p. 1089-1098, 2019/10
  • Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription., Akiko K Okita,Faria Zafar,Jie Su,Dayalini Weerasekara,Takuya Kajitani,Tatsuro S Takahashi,Hiroshi Kimura,Yota Murakami,Hisao Masukata,Takuro Nakagawa, Communications Biology, Vol. 2, p. 17-17, 2019/01
  • Shelterin promotes tethering of late replication origins to telomeres for replication‐timing control, Shiho Ogawa,Sayuri Kido,Tetsuya Handa,Hidesato Ogawa,Haruhiko Asakawa,Tatsuro S Takahashi,Takuro Nakagawa,Yasushi Hiraoka,Hisao Masukata, The EMBO Journal, EMBO, Vol. 37, No. 15, 2018/08
  • Nucleosomes around a mismatched base pair are excluded via an Msh2-dependent reaction with the aid of SNF2 family ATPase Smarcad1, Riki Terui,Koji Nagao,Yoshitaka Kawasoe,Kanae Taki,Torahiko L. Higashi,Seiji Tanaka,Takuro Nakagawa,Chikashi Obuse,Hisao Masukata,Tatsuro S. Takahashi, Genes and Development, Cold Spring Harbor Laboratory Press, Vol. 32, No. 11-12, p. 806-821, 2018/06/01
  • Regulation of mitotic recombination between DNA repeats in centromeres, Faria Zafar,Akiko K Okita,Atsushi T Onaka,Jie Su,Yasuhiro Katahira,Jun-ichi Nakayama,Tatsuro S Takahashi,Hisao Masukata,Takuro Nakagawa, Nucleic Acids Research, Oxford University Press (OUP), Vol. 45, No. 19, p. 11222-11235, 2017/11/02
  • Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation, Atsushi T. Onaka,Naoko Toyofuku,Takahiro Inoue,Akiko K. Okita,Minami Sagawa,Jie Su,Takeshi Shitanda,Rei Matsuyama,Faria Zafar,Tatsuro S. Takahashi,Hisao Masukata,Takuro Nakagawa, Nucleic Acids Research, OXFORD UNIV PRESS, Vol. 44, No. 22, p. 10744-10757, 2016/12
  • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus, Makoto T. Hayashi,Tatsuro S. Takahashi,Takuro Nakagawa,Jun-ichi Nakayama,Hisao Masukata, Nature Cell Biology, NATURE PUBLISHING GROUP, Vol. 11, No. 3, p. 357-U284, 2009/03
  • Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe, Ken-ichi Nakamura,Aya Okamoto,Yuki Katou,Chie Yadani,Takeshi Shitanda,Chitrada Kaweeteerawat,Tatsuro S. Takahashi,Takehiko Itoh,Katsuhiko Shirahige,Hisao Masukata,Takuro Nakagawa, The EMBO Journal, WILEY, Vol. 27, No. 22, p. 3036-3046, 2008/11
  • Mcm4 C-terminal domain of MCM helicase prevents excessive formation of single-stranded DNA at stalled replication forks, Naoki Nitani,Chie Yadani,Hayato Yabuuchi,Hisao Masukata,Takuro Nakagawa, Proceedings of the National Academy of Sciences of the United States of America, NATL ACAD SCIENCES, Vol. 105, No. 35, p. 12973-12978, 2008/09
  • Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast, Makoto Hayashi,Yuki Katou,Takehiko Itoh,Mitsutoshi Tazumi,Yoshiki Yamada,Tatsuro Takahashi,Takuro Nakagawa,Katsuhiko Shirahige,Hisao Masukata, The EMBO Journal, NATURE PUBLISHING GROUP, Vol. 26, No. 5, p. 1327-1339, 2007/03
  • Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins, Hayato Yabuuchi,Yoshiki Yamada,Tomonori Uchida,Tul Sunathvanichkul,Takuro Nakagawa,Hisao Masukata, The EMBO Journal, WILEY, Vol. 25, No. 19, p. 4663-4674, 2006/10
  • Saccharomyces cerevisiae MER3 helicase stimulates 3 '-5 ' Heteroduplex extension by Rad51: Implications for crossover control in meiotic recombination, OM Mazina,AV Mazin,T Nakagawa,RD Kolodner,SC Kowalczykowski, Cell, CELL PRESS, Vol. 117, No. 1, p. 47-56, 2004/04
  • The MER3 DNA helicase catalyzes the unwinding of Holliday junctions, T Nakagawa,RD Kolodner, Journal of Biological Chemistry, AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, Vol. 277, No. 31, p. 28019-28024, 2002/08
  • Saccharomyces cerevisiae Mer3 is a DNA helicase involved in meiotic crossing over, T Nakagawa,RD Kolodner, Molecular and Cellular Biology, AMER SOC MICROBIOLOGY, Vol. 22, No. 10, p. 3281-3291, 2002/05
  • The MER3 helicase involved in meiotic crossing over is stimulated by single-stranded DNA-binding proteins and unwinds DNA in the 3 ' to 5 ' direction, T Nakagawa,H Flores-Rozas,RD Kolodner, Journal of Biological Chemistry, AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, Vol. 276, No. 34, p. 31487-31493, 2001/08
  • The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis, T Nakagawa,H Ogawa, The EMBO Journal, OXFORD UNIV PRESS, Vol. 18, No. 20, p. 5714-5723, 1999/10
  • MutS alpha maintains the mismatch repair capability by inhibiting PCNA unloading, Yoshitaka Kawasoe,Toshiki Tsurimoto,Takuro Nakagawa,Hisao Masukata,Tatsuro S. Takahashi, ELIFE, ELIFE SCIENCES PUBLICATIONS LTD, Vol. 5, 2016/07
  • The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast, Elizabeth J. Blaikley,Helen Tinline-Purvis,Torben R. Kasparek,Samuel Marguerat,Sovan Sarkar,Lydia Hulme,Sharon Hussey,Boon-Yu Wee,Rachel S. Deegan,Carol A. Walker,Chen-Chun Pai,Juerg Baehler,Takuro Nakagawa,Timothy C. Humphrey, Nucleic Acids Research, OXFORD UNIV PRESS, Vol. 42, No. 9, p. 5644-5656, 2014
  • Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast, Atsutoshi Tazumi,Masayoshi Fukuura,Ryuichiro Nakato,Ami Kishimoto,Tomokazu Takenaka,Shiho Ogawa,Ji-hoon Song,Tatsuro S. Takahashi,Takuro Nakagawa,Katsuhiko Shirahige,Hisao Masukata, Genes & Development, COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, Vol. 26, No. 18, p. 2050-2062, 2012/09
  • DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast, Tetsuya Handa,Mai Kanke,Tatsuro S. Takahashi,Takuro Nakagawa,Hisao Masukata, Molecular Biology of the Cell, AMER SOC CELL BIOLOGY, Vol. 23, No. 16, p. 3240-3253, 2012/08
  • The Prereplication Complex Recruits XEco2 to Chromatin to Promote Cohesin Acetylation in Xenopus Egg Extracts, Torahiko L. Higashi,Megumi Ikeda,Hiroshi Tanaka,Takuro Nakagawa,Masashige Bando,Katsuhiko Shirahige,Yumiko Kubota,Haruhiko Takisawa,Hisao Masukata,Tatsuro S. Takahashi, Current Biology, CELL PRESS, Vol. 22, No. 11, p. 977-988, 2012/06
  • Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components, Mai Kanke,Yukako Kodama,Tatsuro S. Takahashi,Takuro Nakagawa,Hisao Masukata, The EMBO Journal, NATURE PUBLISHING GROUP, Vol. 31, No. 9, p. 2182-2194, 2012/05
  • Abundance of Prereplicative Complexes (Pre-RCs) Facilitates Recombinational Repair under Replication Stress in Fission Yeast, Kentaro Maki,Takahiro Inoue,Atsushi Onaka,Hiroko Hashizume,Naoko Somete,Yuko Kobayashi,Shigefumi Murakami,Chikako Shigaki,Tatsuro S. Takahashi,Hisao Masukata,Takuro Nakagawa, Journal of Biological Chemistry, Elsevier BV, Vol. 286, No. 48, p. 41701-41710, 2011/12
  • CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast, Masayoshi Fukuura,Koji Nagao,Chikashi Obuse,Tatsuro S. Takahashi,Takuro Nakagawa,Hisao Masukata, Molecular Biology of the Cell, AMER SOC CELL BIOLOGY, Vol. 22, No. 14, p. 2620-2633, 2011/07
  • Auxin-inducible protein depletion system in fission yeast, Mai Kanke,Kohei Nishimura,Kohei Nishimura,Masato Kanemaki,Masato Kanemaki,Tatsuo Kakimoto,Tatsuro S. Takahashi,Takuro Nakagawa,Hisao Masukata, BMC Cell Biology, Vol. 12, 8, doi:10.1186/1471-2121-12-8, 2011/02/11
  • Regulation of DNA replication machinery by Mrc1 in fission yeast, Naoki Nitani,Ken-ichi Nakamura,Chie Nakagawa,Hisao Masukata,Takuro Nakagawa, Genetics, GENETICS, Vol. 174, No. 1, p. 155-165, 2006/09
  • A novel intermediate in initiation complex assembly for fission yeast DNA replication, Y Yamada,T Nakagawa,H Masukata, Molecular Biology of the Cell, AMER SOC CELL BIOLOGY, Vol. 15, No. 8, p. 3740-3750, 2004/08
  • A novel allele of fission yeast rad11 that causes defects in DNA repair and telomere length regulation, Y Ono,K Tomita,A Matsuura,T Nakagawa,H Masukata,M Uritani,T Ushimaru,M Ueno, Nucleic Acids Research, OXFORD UNIV PRESS, Vol. 31, No. 24, p. 7141-7149, 2003/12
  • Multiple functions of MutS- and MutL-related heterocomplexes, T Nakagawa,A Datta,RD Kolodner, Proceedings of the National Academy of Sciences of the United States of America, NATL ACAD SCIENCES, Vol. 96, No. 25, p. 14186-14188, 1999/12
  • Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing, T Nakagawa,H Ogawa, Genes to Cells, WILEY-BLACKWELL, Vol. 2, No. 1, p. 65-79, 1997/01
  • Functions of the yeast meiotic recombination genes, MRE11 and MRE2, Ogawa H,Johzuka K,Nakagawa T,Leem SH,Hagihara AH, Advances in Biophysics, Elsevier BV, Vol. 31, No. C, p. 67-76, 1995

Misc.

  • Gross chromosomal rearrangements at the centromere, Takuro Nakagawa, Medical Science Digest, Vol. 49, No. 9, p. 64-66, 2023/08
  • ゲノム編集なき遺伝子治療へ, 中川拓郎, ダイヤモンド社「週刊ダイヤモンド」, Vol. 107, No. 41, p. 51-51, 2019/10
  • Rad51 and Rad54 promote noncrossover recombination between centromere repeats to prevent isochromosome formation, Takuro Nakagawa,Atsushi Onaka,Tatsuro S. Takahashi,Hisao Masukata, GENES & GENETIC SYSTEMS, GENETICS SOC JAPAN, Vol. 91, No. 6, p. 372-372, 2016/12
  • Fission yeast CENP-T nucleosomes promote the isochromosome formation in centromere, Jie Su,Akiko Okita,Tatsuro Takahashi,Hisao Masukata,Takuro Nakagawa, GENES & GENETIC SYSTEMS, GENETICS SOC JAPAN, Vol. 90, No. 6, p. 377-377, 2015/12
  • Molecular mechanism of gross chromosomal rearrangements in centromere, Takuro Nakagawa, GENES & GENETIC SYSTEMS, GENETICS SOC JAPAN, Vol. 89, No. 6, p. 283-283, 2014/12
  • The centromere integrity is maintained through the function of kinetochore proteins CENP-SX, Takuro Nakagawa, GENES & GENETIC SYSTEMS, GENETICS SOC JAPAN, Vol. 88, No. 6, p. 340-340, 2013/12
  • Inhibition of nucleosome assembly by the mismatch repair system, Tatsuro Takahashi,Kanae Taki,Torahiko Higashi,Takuro Nakagawa,Hisao Masukata, FASEB JOURNAL, FEDERATION AMER SOC EXP BIOL, Vol. 24, 2010/04

Publications

  • Institute for Radiation Sciences (IRS) Annual Report 2018-2019, Akiko K. Okita,Takuro Nakagawa, 2020/10
  • Fundamental Aspects of DNA Replication, Zafar F,Nakagawa T, InTech, Rijeka, Croatia, ISBN:9789533072593, 2011/09

Awards

  • The incentive award, The genetics society of Japan, 2021/08
  • Reviewer of the Month, Communications Biology (Springer Nature), 2020/04
  • 総長奨励賞(研究部門), 大阪大学, 2015
  • 教育・研究功績賞, 大阪大学, 2009
  • A long-term fellowship, Human Frontier Science Program, 1999
  • 特別研究員(PD), 日本学術振興会, 1998
  • 特別研究員(DC), 日本学術振興会, 1995

Presentations

  • セントロメア領域の転写による染色体異常の発生, 中川 拓郎,Xu Ran,Tang Crystal, 染色体ワークショップ(第41回)・核ダイナミクス研究会(第22回), 2024/01/29
  • Transcription of centromeric DNA repeats causes gross chromosomal rearrangement, Takuro Nakagawa, 2023/12/26
  • Transcriptional restart causes chromosomal rearrangements through DR-loop formation at centromeres, Ran Xu,Crystal Tang,Takuro Nakagawa, 2023/12/06
  • Fission yeast Srr1 and CENP-A cause gross chromosomal rearrangement at centromeres, Ziyi Pan,Takuro Nakagawa, The 46th Annual Meeting of the Molecular Biology Society of Japan, 2023/12/06
  • Transcriptional Restart Causes Chromosomal Rearrangements at the Centromere, Takuro Nakagawa, Celebrating 32 Years of Ludwig San Diego: Insights into Genome Integrity and Regulation in Cancer, 2023/10/17
  • Transcriptional restart causes chromosomal rearrangements at centromeres, Ran Xu,Crystal Tang,Takuro Nakagawa, CSH Conference Asia: Yeast and Life Sciences, 2023/10/11
  • Centromere transcription causes gross chromosomal rearrangements, Takuro Nakagawa,Ran Xu,Crystal Tang, 2023/09/07
  • 染色体セントロメア領域の転写による染色体異常の発生機構, 中川 拓郎,Xu Ran,Tang Crystal, 第27回 DNA複製、組換え、修復ワークショップ, 2023/06/06
  • Srr1/Ber1 promotes isochromosomes formation at centromeres, Ziyi Pan,Piyusha Mongia,Ran Xu,Naoko Toyofuku,Takuro Nakagawa, The 11th International Fission Yeast Meeting, 2023/05/29
  • Transcriptional restart causes chromosomal rearrangements at the centromere, Ran Xu,Crystal Tang,Takuro Nakagawa, The 11th International Fission Yeast Meeting, 2023/06/01
  • Transcriptional restart forms DNA-RNA hybrids that cause centromere instability, Ran Xu,Crystal Tang,Yakumo Kinoshita,Takuro Nakagawa, The 19th international Ataxia-Telangiectasia Workshop 2023, 2023/03/05
  • Transcription of centromeric DNA repeats causes gross chromosomal rearrangement, Takuro Nakagawa, 2023/01/20
  • 転写因子Tfs1によるDNA-RNA形成を介した染色体異常の発生, 中川拓郎,Xu Ran,Tang Crystal, 染色体ワークショップ(第40回)・核ダイナミクス研究会(第21回), 2022/12/20
  • 転写因子Tfs1/TFIISはDNA-RNAハイブリッド形成を促進することでセントロメアでの染色体異常を誘発する, Xu Ran,Tang Crystal,中川拓郎, 日本分子生物学会(第45回), 2022/11/30
  • 分裂酵母Srr1とSkb1はセントロメア領域のDNA反復配列を介した染色体異常を促進する, Mongia Piyusha,Ziyi Pan,沖慶太郎,豊福直子,中川拓郎, 日本分子生物学会(第45回), 2022/11/30
  • ヘテロクロマチン構造による転写制御を介した染色体異常の抑制, Xu Ran,Tang Crystal,中川拓郎, 日本生化学大会(第95回), 2022/11/11
  • Transcription causes gross chromosomal rearrangements at the centromere through R-loop formation, Ran Xu,Crystal Tn,Takuro Nakagawa, 2022/09/15
  • Heterochromatin suppresses gross chromosomal rearrangements at centromeres., Takuro Nakagawa, National Tsing Hua University-Osaka University (NTHU-OU) virtual symposium on biological and medical science, 2022/01/19
  • Ber1 and Skb1 cause gross chromosomal rearrangements at centromeres in rad51∆ cells., Piyusha Mongia,Naoko Toyofuku,Takuro Nakagawa, 2021/12/02
  • Heterochromatin prevents DNA-RNA hybrid formation that causes gross chromosomal rearrangements at centromeres., Ran Xu,Crystal Tang,Takuro Nakagawa, 2021/12/02
  • 染色体異常の分子メカニズム, 中川拓郎, 日本遺伝学会(第93回大会), 2021/09/10
  • Rad8-dependent PCNA ubiquitination at lysine 107 promotes gross chromosomal rearrangements., Jie Su,Takuro Nakagawa, Pombe Talks, 2021/07/21
  • Mechanism of gross chromosomal rearrangements., Takuro Nakagawa, International Summer Program (ISP), School of Science, Graduate School of Science, Osaka University, 2021/07/15
  • 染色体異常の分子メカニズム, 中川拓郎, 日本分子生物学会(第43回), 2020/12/02
  • R ループは分裂酵母のセントロメア領域での染色体異常を引き起こす, Crystal Tang,中川拓郎, 染色体ワークショップ(第37回)・核ダイナミクス研究会(第18回), 2019/12/23
  • 分裂酵母 Rad8 は PCNA K107 のユビキチン化を介してセントロメア領域での染色体異常を引き起こす, 中川拓郎,豊福直子,蘇傑, 染色体ワークショップ(第37回)・核ダイナミクス研究会(第18回), 2019/12/23
  • 分裂酵母Rad8/Rad5/HLTFによる染色体異常の分子機構, 中川拓郎,豊福直子,沖慶太郎,蘇, DNA 複製・組換え・修復ワークショップ(第25回), 2019/11/11
  • 分裂酵母を用いた染色体異常の分子メカニズムの研究, 中川拓郎,沖田暁子,蘇傑,F. Zafar,C. Tang, 理学研究フォーラム(第11回 )研究交流セミナー(第10回 ), 2019/03/08
  • 分裂酵母を用いた染色体異常の分子機構の解明, 中川拓郎, 国立遺伝学研究所・研究集会「ゲノムの維持継承を支える分子基盤の包括的理解とその発展」, 2019/02/14
  • Heterochromatin suppresses gross chromosomal rearrangements at centromeres, Nakagawa, T,Zafar, F,Su, J,Weerasekara, D,Kajitani, T,Takahashi, TS,Kimura, H,Murakami, Y,Masukata, H,Okita, AK, 第20回武田科学振興財団生命科学シンポジウム「RNAネオバイオロジー」, 2019/02/01
  • ヘテロクロマチンによる染色体異常の抑制, 中川拓郎,沖田暁子, 染色体ワークショップ(第36回)・核ダイナミクス研究会(第17回), 2019/01/23
  • ヘテロクロマチンによる転写制御を介した染色体異常の抑制機構, 中川拓郎,Weerasekara, D,蘇傑,Zafar, F,高橋達郎,升方久夫,梶谷卓也,木村宏,村上洋太,沖田暁子, 日本分子生物学会(第41回), 2018/11/28
  • Heterochromatin suppresses gross chromosomal rearrangements at centromeres, Okita AK,Zafar F,Su J,Weerasekara D,Kajitani T,Takahashi TS,Kimura H,Murakami Y,Masukata H,Nakagawa T, The 11th 3R Symposium, 2018/11/13
  • ヘテロクロマチンによる染色体異常の抑制, 沖田暁子,D. Weerasekara,J. Su,F. Zafar,中川拓郎, 日本遺伝学会年会(第90回), 2018/09/19

Media Coverage

  • Ubiquitination of PCNA induces chromosomal abnormalities: expectations for future development of therapeutic agents., JST (Japan Science and Technology Agency), 2021/10
  • Study on chromosomal rearrangements in yeast reveals potential avenue for cancer therapy, The American Association for the Advancement of Science (AAAS), 2021/07

Academic Activities

  • Genes & Genetic Systems (GGS) Prize Editor, The Genetics Society of Japan, 2023/06 -