顔写真

PHOTO

Joe Suzuki
鈴木 讓
Joe Suzuki
鈴木 讓
Graduate School of Engineering Science Department of Systems Innovation, Professor

Research History 15

  1. 2017/04 - Present
    大阪大学 大学院基礎工学研究科 教授

  2. 2017/04/01 - Present
    Osaka University Graduate School of Engineering Science Department of Systems Innovation Professor

  3. 2007/04/01 - 2017/03/31
    Osaka University Graduate School of Science Department of Mathematics Associate Professor

  4. 2007/04 - 2016/03
    Associate Professor, Osaka University

  5. 1998/04/01 - 2007/03/31
    Osaka University Graduate School of Science Department of Mathematics Associate Professor

  6. 1998/04 - 2007/03
    大阪大学大学院理学研究科助教授

  7. 2001/09 - 2002/08
    Yale大学客員助教授

  8. 1998/02 - 1998/04
    Brown大学客員科学者

  9. 1995/04 - 1998/03
    大阪大学大学院理学研究科講師

  10. 1995/09 - 1997/03
    Stanford大学客員講師

  11. 1994/04 - 1995/03
    大阪大学理学部講師

  12. 1992/04 - 1994/03
    青山学院大学理工学部助手

  13. 1989/04 - 1992/03
    早稲田大学理工学部助手

  14. 2007 -
    - 大阪大学大学院理学研究科准教授

  15. 2007 -
    - Associate Professor, Osaka University

Committee Memberships 2

  1. 人工知能学会基本問題研究会 幹事 Academic society

    2004 -

  2. 情報理論とその応用学会 理事 Academic society

    1998 -

Professional Memberships 6

  1. 日本計算機統計学会

  2. 日本統計学会

  3. 日本行動計量学会

  4. 日本数学会

  5. 人工知能学会(Japan Society of Artificial Intelligence)

  6. AAAI (American Association for Artificial Intelligence)

Research Areas 5

  1. Informatics / Statistical science /

  2. Informatics / Mathematical informatics /

  3. Manufacturing technology (mechanical, electrical/electronic, chemical engineering) / Communication and network engineering /

  4. Natural sciences / Algebra /

  5. Informatics / Intelligent informatics /

Awards 2

  1. 杉山明子賞(出版賞)

    日本行動計量学会 2023/08

  2. 林知己夫賞(優秀賞)

    日本行動計量学会 2019/08

Papers 108

  1. Learning under singularity: an information criterion improving WBIC and sBIC

    Lirui Liu, Joe Suzuki

    Japanese Journal of Statistics and Data Science 2024/08/21 Research paper (scientific journal)

    Publisher: Springer Science and Business Media LLC
  2. Generalization of LiNGAM that allows confounding

    Joe Suzuki, Tian-Le Yang

    International Symposium on Information Theory 2024/07

  3. Newton-Type Methods with the Proximal Gradient Step for Sparse Estimation.

    Ryosuke Shimmura, Joe Suzuki

    Oper. Res. Forum Vol. 5 No. 2 p. 27-27 2024/06 Research paper (scientific journal)

  4. Forest construction of Gaussian and discrete variables with the application of Watanabe Bayesian Information Criterion

    Ashraful Islam, Joe Suzuki

    Behaviormetrika Vol. 51 No. 2 p. 589-616 2024/04/12 Research paper (scientific journal)

    Publisher: Springer Science and Business Media LLC
  5. Functional linear non-Gaussian acyclic model for causal discovery

    Tian-Le Yang, Kuang-Yao Lee, Kun Zhang, Joe Suzuki

    Behaviormetrika Vol. 51 No. 2 p. 567-588 2024/03/12 Research paper (scientific journal)

    Publisher: Springer Science and Business Media LLC
  6. Dropout drops double descent

    Tian-Le Yang, Joe Suzuki

    Japanese Journal of Statistics and Data Science Vol. abs/2305.16179 2024/03/06 Research paper (scientific journal)

    Publisher: Springer Science and Business Media LLC
  7. Latent Pushforward Measure for Gaussian Process

    Yasuhiro Sekiya, Joe Suzuki

    International Workshop on Deep Learning and Kernel Machines (DEEPK 2024) 2024/03

  8. Dropout Diminishes Double Descent Similar to Ridge

    Tianle Yang, Joe Suzuki

    International Workshop on Deep Learning and Kernel Machines (DEEPK 2024) 2024/03

  9. Estimation of a Simple Structure in a Multidimensional IRT Model Using Structure Regularization.

    Ryosuke Shimmura, Joe Suzuki

    Entropy Vol. 26 No. 1 p. 44-44 2024/01 Research paper (scientific journal)

  10. Extending Hilbert-Schmidt Independence Criterion for Testing Conditional Independence.

    Bingyuan Zhang, Joe Suzuki

    Entropy Vol. 25 No. 3 p. 425-425 2023/03 Research paper (scientific journal)

  11. Converting ADMM to a proximal gradient for efficient sparse estimation

    Ryosuke Shimmura, Joe Suzuki

    Japanese Journal of Statistics and Data Science Vol. 5 No. 2 p. 725-745 2022/12 Research paper (scientific journal)

  12. The Functional LiNGAM.

    Tianle Yang, Joe Suzuki

    PGM p. 25-36 2022 Research paper (international conference proceedings)

  13. Efficient Proximal Gradient Algorithms for Joint Graphical Lasso.

    Jie Chen, Ryosuke Shimmura, Joe Suzuki

    Entropy Vol. 23 No. 12 p. 1623-1623 2021/12 Research paper (scientific journal)

  14. An Efficient Algorithm for Convex Biclustering

    Jie Chen, Joe Suzuki

    Mathematics Vol. 9 No. 23 2021/11

  15. Causal Order Identification to Address Confounding: Binary Variables.

    Joe Suzuki, Yusuke Inaoka

    Behaviormetrika Vol. 49 No. 1 p. 5-21 2021/09 Research paper (scientific journal)

  16. Why BDeu? Regular Bayesian network structure learning with discrete and continuous variables

    Joe Suzuki

    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS Vol. 13 No. 4 2021/07

  17. Sparse Estimation with Math and R - 100 Exercises for Building Logic

    Joe Suzuki

    p. 1-234 2021

    Publisher: Springer
  18. Mutual Information Estimation: Independence Detection and Consistency.

    Joe Suzuki

    IEEE International Symposium on Information Theory(ISIT) p. 2514-2518 2019 Research paper (international conference proceedings)

    Publisher: IEEE
  19. Forest Learning from Data and its Universal Coding

    Joe Suzuki

    IEEE Transactions on Information Theory Vol. 64 No. 12 2018/12 Research paper (scientific journal)

  20. Branch and Bound for Continuous Bayesian Network Structure Learning

    Joe Suzuki

    2018/09

  21. Branch and Bound for Regular Bayesian Network Structure learning

    Uncertainty in Artificial Intelligence p. 212-221 2017/08 Research paper (international conference proceedings)

  22. Klein's fundamental 2-form of second kind for the $C_{ab}$ curves

    Joe Suzuki

    Symmetry Integrability and Geometry Methods and Applications 2017/03 Research paper (scientific journal)

  23. A Theoretical Analysis of the BDeu Scores in Bayesian Network Structure Learning

    Joe Suzuki

    Behaviormetrika Vol. 1 No. 1 p. 1-20 2017/01 Research paper (scientific journal)

    Publisher: Springer
  24. An Estimator of Mutual Information and its Application to Independence Testing

    Joe Suzuki

    Entropy Vol. 16 No. 4 p. 104-104 2016/03 Research paper (scientific journal)

  25. Forest Learning Based on the Chow-Liu Algorithm and Its Application to Genome Differential Analysis: A Novel Mutual Information Estimation

    Joe Suzuki

    Lecture Notes on Artificial Intelligence Vol. 9505 p. 234-249 2015/11 Research paper (international conference proceedings)

    Publisher: Springer
  26. Efficiently Learning Bayesian Network Structures Based on the B&B Strategy: A Theoretical Analysis

    Joe Suzuki

    Lecture Notes on Artificial Intelligence Vol. 9505 p. 1-14 2015/11 Research paper (international conference proceedings)

    Publisher: Springer
  27. Consistency of Learning Bayesian Network Structures with Continuous Variables: An Information Theoretic Approach

    Joe Suzuki

    Entropy Vol. 15 No. 8 p. 5752-5770 2015/08 Research paper (scientific journal)

  28. Bayes Independence Test

    Takanori Ayano, Joe Suzuki

    2014/11

  29. Learning Bayesian Network Structures with Discrete and Continuous Variables

    Joe Suzuki

    2014/11

  30. Learning Bayesian network structures when discrete and continous variables are present

    Joe Suzuki

    2014/09 Research paper (international conference proceedings)

  31. The Chow-Lui algorithm based on the MLD when discreete and continuous variables are present

    Joe Suzuki

    2014/09

  32. Causal Discovery in a Binary Exclusive-or Skew Acyclic Model: BExSAM.

    Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara

    CoRR Vol. abs/1401.5636 2014 Research paper (scientific journal)

  33. The Universal Bayesian Chow-Liu Algorithm

    Joe Suzuki

    2013/10 Research paper (international conference proceedings)

  34. Universal Bayesian Measures

    Joe Suzuki

    2013/07 Research paper (international conference proceedings)

  35. Network Coding and PolyMatroid (Simple Survey)"

    Joe Suzuki

    2013/05 Research paper (international conference proceedings)

  36. On d-Asymptotics for High-Dimensional Discriminant Analysis with Different Variance-Covariance Matrices

    Takanori Ayano, Joe Suzuki

    IEICE Trans. on D 2012/12 Research paper (scientific journal)

  37. Universal Prediction without assuming either Discrete or Continuous

    Joe Suzuki

    2012/11

  38. The Hannan-Quinn Proposition for Linear Regression

    Joe Suzuki

    International Journal of Statistics and Probability 2012/11 Research paper (scientific journal)

  39. Bayesian Criteria based on Universal Measures

    Joe Suzuki

    2012/10 Research paper (international conference proceedings)

  40. The Bayesian Chow-Liu Algorithms

    Joe Suzuki

    2012/09 Research paper (international conference proceedings)

  41. Bayesian Network Structure Learning for Discrete and Continuous Variables

    Joe Suzuki

    2012/08 Research paper (international conference proceedings)

  42. Bayesian Network Structure Estimation Based on the Bayesian/MDL Criteria when Both Discrete and Continuous Variables are Present

    Joe Suzuki

    2012/04 Research paper (international conference proceedings)

  43. MDL/Bayesian Criteria based on UniversalCoding/Measure

    Joe Suzuki

    2011/11 Research paper (international conference proceedings)

  44. Discovering causal structuresin binary exclusive-or skew acyclic models

    Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara

    CoRR Vol. abs/1202.3736 2011/07 Research paper (international conference proceedings)

  45. The Universal Measure for General Sources and its Application to MDL/Bayesian Criteria"

    Joe Suzuki

    Data Compression Conference 2011/03 Research paper (international conference proceedings)

    Publisher: IEEE
  46. Discovering causal structures in binary exclusive-or skew acyclic models.

    Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara

    UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011 p. 373-382 2011

    Publisher: AUAI Press
  47. A MARKOV CHAIN ANALYSIS OF GENETIC ALGORITHMS: LARGE DEVIATION PRINCIPLE APPROACH

    Joe Suzuki

    JOURNAL OF APPLIED PROBABILITY Vol. 47 No. 4 p. 967-975 2010/12 Research paper (scientific journal)

  48. A Generalization of Nonparametric Estimation and On-Line Prediction for Stationary Ergodic Sources

    Joe Suzuki

    2010/10 Research paper (international conference proceedings)

  49. A Generalization of the Chow-Liu Algorithm and its Applications to Artificial Intelligence

    Joe Suzuki

    2010/07 Research paper (international conference proceedings)

  50. Chow-Liu Algorithm for Generalized Random Values

    Joe Suzuki

    2010/04 Research paper (international conference proceedings)

  51. Miura conjecture on Affine curves

    Joe Suzuki

    OSAKA JOURNAL OF MATHEMATICS Vol. 44 No. 1 p. 187-196 2007/03 Research paper (scientific journal)

  52. On strong consistency of model selection in classification

    Joe Suzuki

    IEEE TRANSACTIONS ON INFORMATION THEORY Vol. 52 No. 11 p. 4767-4774 2006/11 Research paper (scientific journal)

  53. On the Stationary Distribution of GAs with Positive Crossover Probability

    Chandi DeSilva, Suzuki, J

    GECCO Vol. 257-264 2005/06 Research paper (scientific journal)

  54. Coding combinatorial sources with costs

    J Suzuki, B Ryabko

    IEEE TRANSACTIONS ON INFORMATION THEORY Vol. 50 No. 5 p. 925-928 2004/05 Research paper (scientific journal)

  55. Universal Prediction and Universal Coding

    Joe Suzuki

    The Transactions of the Institute of Electronics,Information and Communication Engineers. Vol. 85 No. 5 p. 735-746 2002/05 Research paper (scientific journal)

    Publisher: 電子情報通信学会
  56. ユニバーサルな符号化とユニバーサルな予測

    電子情報通信学会論文誌 Vol. DII 2002/05

  57. Performance of data compression in terms of Hausdorff dimension

    K Hojo, BY Ryabko, J Suzuki

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. E84A No. 7 p. 1761-1764 2001/07 Research paper (scientific journal)

  58. Comparing the multilevel pattern matching code and the Lempel-Ziv codes

    Boris Ya Ryabko, Joe Suzuki

    IEEE International Symposium on Information Theory - Proceedings 2001/06 Research paper (scientific journal)

  59. Jacobian Group Arithmetic for Cryptography

    Ryuichi Harasawa, Joe Suzuki

    2001/01 Research paper (scientific journal)

    Publisher: 電子情報通信学会
  60. A fast Jacobian group arithmetic scheme for algebraic curve cryptography

    R Harasawi, J Suzuki

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. E84A No. 1 p. 130-139 2001/01 Research paper (scientific journal)

  61. Combinatorial Source Coding with Costs

    Joe Suzuki, Boris Ryabko

    ISITA-2000 Honolulu,Hawaii p. 235-239 2000/11 Research paper (scientific journal)

  62. Fast Jacobian Group Arithmetic on Cab Curves

    Ryuichi Harasawa, Joe Suzuki

    Lecture Note on Computer Science,the 4th Algorithmic Number Theory Sympojium p. 359-376 2000/07 Research paper (scientific journal)

    Publisher: Springer-Verlag
  63. Realizing the Menezes-Okamoto-Vanstone(MOV)Reduction Efficiently for Ordinary Elliptic Curves

    J. Shikata, Y. Zheng, J. Suzuki, H. Imai

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. 83 No. 4 p. 756-763 2000/04 Research paper (scientific journal)

  64. Optimizing the Menezes-Okamoto-Vanstone Algorithm for Non-Supersingular Elliptic Curves

    J. Shikata, Y. Zheng, J. Suzuki, H. Imai

    Lecture Note on Computer Science, Asiacrypt '99 1999/12 Research paper (scientific journal)

    Publisher: Springer Verlag
  65. Learning Bayesian Belief Networks based on the Minimum Descripion length Principle : Basic Properties

    Joe Suzuki

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. E82A No. 10 p. 2237-2245 1999/10 Research paper (scientific journal)

  66. 楕円曲線暗号におけるMOV帰着とFR帰着の比較について

    原澤隆一, 四方順司, 鈴木讓, 今井秀樹

    電子情報通信学会論文誌A「代数曲線とその応用特集号」 p. 1278-1290 1999/08 Research paper (scientific journal)

    Publisher: 電子情報通信学会
  67. Hausdorff Dimension as a New Dimension in Source Coding and Prediction

    Boris Ryabko, Joe Suzuki, Flemming Topose

    Proceedings of the 1999 IEEE Information Theory and Communications Workshop p. 66-68 1999/06 Research paper (scientific journal)

    Publisher: IEEE Information Theory Workshop, Johannesburg, South Africa
  68. Comparing the MOV and FR Reductions in Elliptic Curve Cryptography

    SUZUKI Jo

    Proc. Eurocrypt'99 Vol. 82 No. 8 p. 1278-1290 1999/05 Research paper (scientific journal)

    Publisher: Springer Verlag
  69. Learning Bayesian Belief Networks Based on the MLD Principle : An Efficient Algorithm Using the Branch and Bound Technique

    Joe Suzuki

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS Vol. E82D No. 2 p. 356-367 1999/02 Research paper (scientific journal)

  70. Comparing the MOV and FR reductions in elliptic curve cryptography

    R Harasawa, J Shikata, J Suzuki, H Imai

    ADVANCES IN CRYPTOLOGY - EUROCRYPT'99 Vol. 1592 p. 190-205 1999 Research paper (scientific journal)

  71. It is not enough to use stationary ergodic source for analyzing universal Coding

    Joe Suzuki, Boris Ryabko

    Proc. of the Int. Symposium on Information Theory and Its Application '98, Mexico City, Mexico Vol. Vol. E84-A, No.1 1998/11 Research paper (scientific journal)

    Publisher: SITA
  72. A Relationship between Context Tree Weighting and General Model Weighting Techniques for Tree Sources

    Joe Suzuki

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. E81A No. 11 p. 2412-2417 1998/10 Research paper (scientific journal)

  73. Elliptic Curve Discrete Logarithms and the Index Calculus

    SUZUKI Jo

    ADVANCES IN CRYPTOLOGY - ASIACRYPT'98 Vol. 1514 p. 110-125 1998 Research paper (scientific journal)

  74. Universal Coding and Universal Prediction

    SUZUKI Jo

    IMPRM-98, Novosivirsk, Russia 1998 Research paper (scientific journal)

    Publisher: IMPRM-98, Novosivirsk, Russia
  75. A Further Result on the Markov Chain Model of GAs and Their Application to SA-like Strategy

    SUZUKI Jo

    FOGA-96, San Diego, CA p. 57-72 1998 Research paper (scientific journal)

    Publisher: IEEE Trans. on Systems, Man, and Cybernetics
  76. A further result on the Markov chain model of genetic algorithms and its application to a simulated annealing-like strategy

    Joe Suzuki

    IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics Vol. 28 No. 1 p. 95-102 1998 Research paper (scientific journal)

  77. On the Error Probability of Model Selection for Classification

    SUZUKI Jo

    p. 513-520 1997 Research paper (scientific journal)

    Publisher: AIS-97, Fort Lauderdale, FL
  78. Universal Prediction and Universal Coding

    SUZUKI Jo

    IEEE ISIT-97, Ulm, Germany 1997 Research paper (scientific journal)

    Publisher: IEEE ISIT-97, Ulm, Germany
  79. Learning Bayesian Belief Networks Based on the Minimum Description Length Principle : an Efficient Algorithm using B & B Technique

    SUZUKI Jo

    ICML-96, Bari, Italy 1996 Research paper (scientific journal)

    Publisher: ICML-96, Bari, Italy
  80. A CTW Scheme for Non-tree Sources

    SUZUKI Jo

    DCC '96 - DATA COMPRESSION CONFERENCE, PROCEEDINGS p. 454-454 1996 Research paper (scientific journal)

  81. A Markov Chain Analysis on Simple Genetic Algorithms

    SUZUKI Jo

    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS Vol. 25 No. 4 p. 655-659 1995 Research paper (scientific journal)

  82. An Extension 'An Extension on Learning Bayesian Bayesian Belief Networks Basedon MDL Principle'

    SUZUKI Jo

    PROCEEDINGS 1995 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY p. 232-232 1995 Research paper (scientific journal)

  83. A CTW Scheme for Some FMS Models

    SUZUKI Jo

    PROCEEDINGS 1995 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY p. 389-389 1995 Research paper (scientific journal)

  84. Some Notes on Universal Noiseless Coding

    SUZUKI Jo

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. 78 No. 12 p. 1840-1847 1995 Research paper (scientific journal)

  85. A PAC Learning Theoretical Analysis on Software Testing

    SUZUKI Jo

    the IEEE International Workshop on Information Theory p. 98-101 1994 Research paper (scientific journal)

    Publisher: the IEEE International Workshop on Information Theory
  86. Tighter Bounds on Universal Noiseless Coding for Finite Sequences

    SUZUKI Jo

    IEEE International Symposium on Information Theory - Proceedings 1994 Research paper (scientific journal)

    Publisher: the IEEE ISIT-94
  87. On a Generalized Context Tree Weighting Scheme

    SUZUKI Jo

    the Fourhe Benelux-Japan Workshop of Information Theory Vol. 94 No. 171 p. 19-24 1994 Research paper (scientific journal)

    Publisher: the Fourhe Benelux-Japan Workshop of Information Theory
  88. A Universal Coding Scheme Based on Minimizing Minimax Redundancy for Sources with Unknown Model

    SUZUKI Jo

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. E76A No. 7 p. 1234-1239 1993 Research paper (scientific journal)

  89. Evaluations for Estimation of Information Source Based on State Decomposition

    SUZUKI Jo

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES Vol. E76A No. 7 p. 1240-1251 1993 Research paper (scientific journal)

  90. A Markov Chain Analysis on a Genetic Algorithm

    SUZUKI Jo

    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS p. 146-153 1993 Research paper (scientific journal)

  91. A Construction of Bayesian Networks from Databases on an MDL Principle

    SUZUKI Jo

    the Ninth Congerence on Uncertainty in Artificial Intelligence p. 266-273 1993 Research paper (scientific journal)

    Publisher: the Ninth Congerence on Uncertainty in Artificial Intelligence
  92. Selection of the Stochastic Model based on the Minimum Description Length Principle and State Decomposition

    SUZUKI Joe, OHDAKE Yasutaka, HIRASAWA Shigeichi

    Transactions of Information Processing Society of Japan Vol. Vol.33 No. No.11 p. 1281-1289 1992 Research paper (scientific journal)

    Publisher: Information Processing Society of Japan (IPSJ)
  93. 記延長最小規準と状態分割の立場から見た確率的規則の学習

    鈴木讓

    Vol.J75-A/No.8,1412-1421 Vol. Vol.J75-A No. No.8 p. 1412-1421 1992 Research paper (scientific journal)

    Publisher: IEICE Trans. on Fundamentals of Electronics, Communications and Communications and Computer Science
  94. The Optimal Estimation of an Information Source in an Extended Neyman-Pearson Sense

    SUZUKI Jo

    International Conference on Economics / Managemant and Information Technology p. 585-588 1992 Research paper (scientific journal)

    Publisher: International Conference on Economics / Managemant and Information Technology
  95. Toshiyasu Matsushima, Joe Suzuki, Hiroshige Inazumi, Shigeichi Hirasawa, ``Inductive Inference Scheme at a Finite Stage of Process from a Viewpoint of Source Coding''

    IEICE Trans. on Fundamentals. Vol. Vol. E73, No. 5, pages 644-652/, 1990/05

  96. An efficient user interface based on maximizing shared information

    Joe Suzuki, Toshiyasu Matsushima, Shigeichi Hirsawa, Hiroshige Inazumi

    Electronics and Communications in Japan (Part III: Fundamental Electronic Science) Vol. 73 No. 5 p. 40-49 1990 Research paper (scientific journal)

  97. 情報による不確実な知識の表現法と推論に関する考察(共著)

    鈴木讓

    /第131号,38-51 1990 Research paper (bulletin of university, research institution)

    Publisher: 早稲田大学理工学研究所報告
  98. Inductive Inference Scheme at a Finite Stage of Process from a Viewpoint of Source Coding (共著)

    SUZUKI Jo

    1990 Research paper (scientific journal)

    Publisher: IEICE Trans
  99. Generalization of the Learning Method for Classifying Rules with Consistency Irrespective of the Classified Patterns and the Representation Form

    SUZUKI Jo

    ISITA-90 p. 495-498 1990 Research paper (scientific journal)

    Publisher: ISITA-90
  100. On the Optimal Inductive Inference Scheme from the Viewpoint of Source Coding(共著)

    SUZUKI Jo

    IEEE ISIT-90 1990 Research paper (scientific journal)

    Publisher: IEEE ISIT-90
  101. Design Method of User Interface for Minimizing the Number of Questions and Answers (共著)

    SUZUKI Jo

    No. No.53 p. 85-101 1990 Research paper (bulletin of university, research institution)

    Publisher: 早稲田大学理工学部紀要
  102. Stopping rules based on a posteriori probability for every pattern and every stage

    Joe Suzuki, Toshiyasu Matsushima, Shigeichi Hirasawa, Hiroshige Inazumi

    Electronics and Communications in Japan (Part III: Fundamental Electronic Science) Vol. 72 No. 8 p. 71-82 1989 Research paper (scientific journal)

  103. 質問応答回数最小をねらいとした知的インタフェイスの設計(共著)

    鈴木讓

    vol.8/Autumn,41-48 1989 Research paper (bulletin of university, research institution)

    Publisher: 早稲田大学情報科学教育研究センター紀要
  104. 相互情報量最小最大に基準をおくユーザーインタフェイスの効率化(共著)

    鈴木讓

    Vol.J72-A/No.3,517-524 Vol. Vol.J72-A No. No.3 p. 517-524 1989 Research paper (scientific journal)

    Publisher: 電子情報通信学会論文誌A
  105. Design method of intelligent interface for minimizing the number of questions and answers

    Joe Suzuki, Toshiyasu Matsushima, Shigeichi Hirasawa, Hiroshige Inazumi

    Bulletin of Centre for Informatics (Waseda University) Vol. 8 p. 41-48 1988/09 Research paper (scientific journal)

  106. パターンごとステージごとに事後確率のしきい値をおくストッピングルール(共著)

    鈴木讓

    Vol.J71-A/No.6,1299-1308 Vol. Vol.J71-A No. No.6 p. 1299-1308 1988 Research paper (scientific journal)

    Publisher: 電子情報通信会学会論文誌 A
  107. On Uncertain Logic Based Upon Information Theory (共著)

    SUZUKI Jo

    IEEE ISIT-88 1988 Research paper (scientific journal)

    Publisher: IEEE ISIT-88
  108. Feature Ordering and Stopping Rule Based on Maximizing Mutual Imformation (共著)

    SUZUKI Jo

    IEEE ISIT-88 1988 Research paper (scientific journal)

    Publisher: IEEE ISIT-88

Misc. 7

  1. Efficient Bayesian Network Structure Learning for Maximizing the Posterior Probability (特集 「命題論理の充足可能性問題SATと応用技術」および一般)

    Suzuki Joe

    人工知能基本問題研究会 Vol. 100 p. 74-79 2016/03/27

    Publisher: 人工知能学会
  2. Causal Discovery between Discrete and Continuous Variables

    鈴木 譲, 清水 昌平, 鷲尾 隆

    人工知能基本問題研究会 Vol. 94 p. 35-40 2014/07/24

    Publisher: 人工知能学会
  3. 離散データの因果の同定 : 2値から、多値への一般化について—情報論的学習理論と機械学習

    鈴木 譲, 清水 昌平, 鷲尾 隆

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報 Vol. 111 No. 275 p. 207-212 2011/11

    Publisher: 東京 : 電子情報通信学会
  4. ベイジアンネットワークにおける代数幾何

    鈴木譲

    人工知能学会誌 Vol. Vol. 25, No. 6 2010/11

    Publisher: オーム社
  5. 田中和之「ベイジアンネットワークの統計的推論の数理」

    鈴木譲

    数理科学 Vol. No. 566 2010/08

    Publisher: オーム社
  6. ベイジアンネットワーク入門

    鈴木 譲

    培風館 2009/07

  7. Mathematics of Information and Coding

    Joe Suzuki

    AMS 2001

Publications 21

  1. 渡辺澄夫ベイズ理論100問with Python/Stan

    鈴木, 譲

    共立出版 2024/07

    ISBN: 9784320125155

  2. WAIC and WBIC with Python Stan: 100 Exercises for Building Logic

    Joe Suzuki

    Springer 2023/12

  3. WAIC and WBIC with R Stan 100: Exercises for Building Logic

    Joe Suzuki

    Springer 2023/10

  4. 渡辺澄夫ベイズ理論100問with R/Stan

    鈴木, 譲

    共立出版 2023/09

    ISBN: 9784320125148

  5. Kernel methods for machine learning with Math and Python : 100 exercises for building logic

    Joe, Suzuki

    Springer 2022

    ISBN: 9789811904004

  6. Kernel methods for machine learning with Math and R : 100 exercises for building logic

    鈴木, 譲

    Springer 2022

    ISBN: 9789811903977

  7. 機械学習のためのカーネル100問with Python

    鈴木, 譲

    共立出版 2021/12

    ISBN: 9784320125131

  8. 機械学習のためのカーネル100問with R

    鈴木, 譲

    共立出版 2021/11

    ISBN: 9784320125124

  9. スパース推定100問with Python

    鈴木, 譲

    共立出版 2021/01

    ISBN: 9784320125094

  10. Sparse estimation with math and R : 100 exercises for building logic

    鈴木, 譲

    Springer 2021

    ISBN: 9789811614453

  11. Statistical learning with math and Python : 100 exercises for building logic

    鈴木, 譲

    Springer 2021

    ISBN: 9789811578762

  12. Sparse estimation with math and Python : 100 exercises for building logic

    鈴木, 譲

    Springer 2021

    ISBN: 9789811614378

  13. スパース推定100問with R

    鈴木, 譲

    共立出版 2020/10

    ISBN: 9784320125087

  14. 統計的機械学習の数理100問with R

    鈴木, 譲

    共立出版 2020/04

    ISBN: 9784320125063

  15. 統計的機械学習の数理100問with Python

    鈴木, 譲

    共立出版 2020/04

    ISBN: 9784320125070

  16. Statistical learning with math and R : 100 exercises for building logic

    鈴木, 譲

    Springer 2020

    ISBN: 9789811575679

  17. Lecture Notes on Computer Science 9505: Advanced Methodologies for Bayesian Networks

    Joe Suzuki, Maomi Ueno

    Springer 2016/11 Other

  18. 確率的グラフィカルモデル

    鈴木, 譲, 植野, 真臣, 黒木, 学(工学), 清水, 昌平, 湊, 真一, 石畠, 正和, 樺島, 祥介, 田中, 和之, 本村, 陽一, 玉田, 嘉紀

    共立出版 2016/07

    ISBN: 9784320111394

  19. ベイジアンネットワーク入門 : 確率的知識情報処理の基礎

    鈴木, 譲

    培風館 2009/07

    ISBN: 9784563015756

  20. Mathematics of Bayesian Networks

    Joe Suzuki

    Baihukan 2009/07 Scholarly book

  21. Mathematics of Information and Coding

    Han Te Sun, Kingo Kobayashi, Joe Suzuki, ranslation

    AMS 2001/11 Scholarly book

Presentations 9

  1. E-learning Design and Development for Data Science in Osaka University

    Joe Suzuki

    2017/11

  2. Conditional Mutual Information Estimation and its application to Conditional Independence Detection

    Joe Suzuki

    2017/09

  3. Structure Learning of Bayesian Networks with p Nodes from n Samples when n<<p

    Joe Suzuki

    2016/03

  4. 確率的グラフィカルモデルにおける構造学習

    鈴木譲

    2015/03

  5. The MDL principle for arbitrary data:either discrete or continuous or none of them

    Joe Suzuki

    2013/08

  6. "It is not enough to use stationary ergodic source for analyzing universal Coding"

    ISITA '98, Mexico City, Mexico 1998

  7. "On the Error Probability of Model Selection for Classification"

    IEEE ISIT-97, Ulm, Germany 1997

  8. "Minimizing Minimax Redundancy for Sources with Unknown Model

    IEEE ISIT-93 1993

  9. "A Universal Coding Scheme Based on Minimizing Minimax Redundancy for Sources with Unknown Model

    ISITA-92 1992

Works 18

  1. R言語 パッケージ BNSL

    鈴木譲 川原純

    CRAN 2017/03 -

  2. ベイジアンネットワークの構造学習の一致性に関する研究

    2009 -

  3. 代数曲線暗号に対するGHSアタックから安全性を確保する

    2006 -

  4. モンテカルロ法における安全な疑似乱数の研究

    2005 -

  5. 確率と論理に関するワークショップ的研究

    2004 -

  6. 国立情報学研究所共同研究「推論と確率に関するワークショップ的研究」

    2004 -

  7. データマイニングとベイジアンネットワークの手法を用いたウイルスチェックおよびスパムフィルタ

    2003 -

  8. 代数曲線における離散対数問題と情報セキュリティ

    2003 -

  9. 代数曲線における離散対数問題と情報セキュリティ

    2002 -

  10. 代数曲線における離散対数問題と情報セキュリティ

    2001 -

  11. Hausdorff 次元を用いたユニバーサルデータ圧縮の評価

    2001 -

  12. 代数曲線暗号の評価に関する研究

    2000 -

  13. Hausdorff 次元を用いたユニバーサルデータ圧縮の評価

    2000 -

  14. 事前知識を考慮したベイジアンネットワークの効率的学習

    1998 -

  15. 事前知識を考慮したベイジアンネットワークの効率的学習

    1997 -

  16. MDL原理に基づくベイジアンネットワークの学習

    1994 -

  17. ネットワークルーティングに関する研究

    1993 -

  18. ネットワークルーティングに関する研究

    1992 -

Industrial Property Rights 1

  1. 代数曲線公開鍵暗号化法

    鈴木譲, 原澤隆一

    2000-215120

    出願日:2000/07

Academic Activities 34

  1. Behaviormetrika, Springer(Coordinate Editor)

    2016/04 - Present

  2. 電子情報通信学会情報論的学習理論研究専門委員会(研究専門委員長)

    2005/05 - Present

  3. 人工知能学会基本問題研究会(幹事)

    2004/04 - Present

  4. 電子情報通信学会(和文DII 小特集「情報論的学習理論」(2004年12月発行) 編集委員)

    2004/03 - Present

  5. 電子情報通信学会(情報システムソサイエティ誌 編集委員(2003年5月から))

    2003/05 - Present

  6. 電子情報通信学会(和文A 論文誌編集委員)

    2001/05 - Present

  7. Journal of Applied & Computational Mathematics(Executive Editor)

    2011/04 - 2016/12

  8. 電子情報通信学会(英文誌A 小特集 "Special Issue on Information Theory and its Applications" (2003年9 月発行) 編集委員)

    2002/11 - 2003/09

  9. 電子情報通信学会(和文DII 情報論的学習理論特集号編集委員(2003年5月発行) 幹事)

    2001/08 - 2002/02

  10. 人工知能学会(情報論的学習理論ワークショップ特集号 幹事)

    2000/08 - 2001/02

  11. Advanced Methodologies for Bayesian Networks 2017

    京都大学数理解析研究所、産業技術総合研究所人工知能研究センター

    2017/09 -

  12. Uncertainty in Artificial Intelligence 2017

    Association of Uncertainty in Artificial Intelligence

    2017/08 -

  13. Artificial Intelligence and Statistics 2017

    Artificial Intelligence and Statistics

    2017/05 -

  14. 数学協働プログラム「確率的グラフィカルモデルの産業界への応用」

    文部科学省

    2016/11 -

  15. Uncertainty in Artificial Intelligence 2016

    Association of Uncertainty in Artificial Intelligence

    2016/07 -

  16. Artificial Intelligence and Statistics 2016

    Artificial Intelligence and Statistics

    2016/05 -

  17. Advanced Methodologies for Bayesian Networks 2015

    人工知能学会、産業秘術総合研究所人工知能研究センター

    2015/11 -

  18. Uncertainty in Artificial Intelligence 2015

    Association of Uncertainty in Artificial Intelligence

    2015/07 -

  19. Artificial Intelligence and Statistics 2015

    Artificial Intelligence and Statistics

    2015/05 -

  20. 数学協働プログラム「確率的グラフィカルモデル」

    文部科学省

    2015/03 -

  21. Neural Information Processing Systems Conference and Workshops

    Neural Information Processing Systems Foundation

    2014/12 -

  22. Uncertainty in Artificial Intelligence

    Association of Uncertainty in Artificial Intelligence

    2014/07 -

  23. Artificial Intelligence and Statistics 2014

    Artificial Intelligence and Statistics

    2014/04 -

  24. Uncertainty in Artificial Intelligence 2013

    Association of Uncertainty in Artificial Intelligence

    2013/06 -

  25. Uncertainty in Artificial Intelligence 2012

    Association of Uncertainty in Artificial Intelligence

    2012/06 -

  26. 情報論的学習理論ワークショップ(IBIS2006)

    電子情報通信学会情報論的学習理論研究専門委員会

    2006/10 -

  27. 情報論的学習理論ワークショップ(IBIS2005)

    電子情報通信学会情報論的学習理論研究専門委員会

    2005/11 -

  28. 2003年ベイジアンネットワークセミナー(BN2003)

    人工知能学会基礎論研究会

    2003/11 -

  29. 2002年ベイジアンネットワークセミナー(BN2002)

    人工知能学会

    2002/09 -

  30. 2001年ベイジアンネットワーク・ワークショップ(BN2001)

    人工知能学会基礎論研究会

    2001/07 -

  31. 2001年情報論的学習理論ワークショップ(IBIS2001)

    電子情報通信学会

    2001/07 -

  32. 大阪府産学協同事業展示会

    大阪府

    2001/03 -

  33. 代数曲線とその符号暗号への応用ワークショップ

    情報理論とその応用学会

    2001/01 -

  34. 2000年情報論的学習理論ワークショップ(IBIS2000)

    電子情報通信学会

    2000/07 -

Institutional Repository 2

Content Published in the University of Osaka Institutional Repository (OUKA)
  1. Learning under singularity: an information criterion improving WBIC and sBIC

    Liu Lirui, Suzuki Joe

    Japanese Journal of Statistics and Data Science 2024/08/21

  2. Miura conjecture on Affine curves

    Suzuki Joe

    Osaka Journal of Mathematics Vol. 44 No. 1 p. 187-196 2007/03