顔写真

PHOTO

SHIMIZU Shohei
清水 昌平
SHIMIZU Shohei
清水 昌平
The Institute of Scientific and Industrial Research, Professor

keyword Causal Discovery,Statistical Science,LiNGAM,NMAR,GPGPU,Multivariate analysis

Research History 11

  1. 2025/04 - Present
    Shiga University

  2. 2025/02 - Present
    Osaka University SANKEN Professor

  3. 2025/02 - 2025/03
    Shiga University Faculty of Data Science Specially Appointed Professor

  4. 2018/04 - 2025/01
    Shiga University Faculty of Data science Professor

  5. 2017/04/01 - 2018/03/31
    Shiga University Faculty of Data science Associate Professor

  6. 2016/04 - 2018/03
    Osaka University SANKEN Specially-Appointed Associate Professor

  7. 2016/04/01 - 2017/03/31
    Shiga University Center for Education and Research of Data Science Associate Professor

  8. 2013/04 - 2016/03
    Osaka University SANKEN Associate Professor

  9. 2009/04 - 2013/03
    Osaka University SANKEN Assistant Professor

  10. 2008/08 - 2009/03
    Tokyo Institute of Technology Postdoctoral Researcher

  11. 2006/04 - 2008/07
    Japan Society for the Promotion of Science Research Fellow of the Japan Society for the Promotion of Science (Postdoctoral Researcher)

Education 3

  1. Osaka University Graduate School, Division of Engineering Science

    - 2006/03

  2. Osaka University Graduate School, Division of Human Science

    - 2003/03

  3. Osaka University Faculty of Human Science

    - 2001/03

Committee Memberships 14

  1. Society for General Psychology, Division 1 of the American Psychological Association Editorial Board Member of Review of General Psychology Academic society

    2025 - Present

  2. 電子情報通信学会 情報論的学習理論と機械学習研究専門委員会 専門委員 Academic society

    2024 - Present

  3. Springer Coordinating Editor of Behaviormetrika

    2016 - Present

  4. Elsevier Neurocomputing Associate editor

    2019/01 - 2024/12

  5. Elsevier Neurocomputing 編集委員

    2019/01 - 2024/12

  6. 日本行動計量学会 イノベーション委員会 委員

    2018/06 - 2023/03

  7. 日本行動計量学会 理事

    2015/04 - 2023/03

  8. 講談社 データサイエンス入門シリーズ 編集委員

    2017 - 2023

  9. Elsevier Neural Networks Action editor

    2020/01 - 2022/02

  10. 日本行動計量学会 大会担当委員会 委員

    2018/11 - 2021/03

  11. 応用統計学会 学会誌 応用統計学 編集委員

    2018/04 - 2020/03

  12. 日本行動計量学会 日本行動計量学会第47回大会 実行委員会 委員

    2018/11 - 2019/09

  13. 日本行動計量学会 運営委員会 委員

    2015/06 - 2018/03/31

  14. Springer Guest editor of the special feature on recent developments in causal discovery and inference in Behaviormetrika

    2016 - 2017/01

Research Areas 4

  1. Informatics / Statistical science /

  2. Informatics / Intelligent informatics /

  3. Natural sciences / Applied mathematics and statistics /

  4. Natural sciences / Basic mathematics /

Awards 10

  1. 卓越教授

    滋賀大学 2025/04

  2. 滋賀大学 学長賞

    清水昌平 2025/03

  3. TrustCom-2023 Outstanding Paper Award

    S. Wani, X. Zhou, S. Shimizu 2023/11

  4. 2023 IEEE IES TC-II Best Paper

    X. Zhou, X. Xu, W. Liang, Z. Zeng, S. Shimizu, L. T. Yang, Q. Ji 2023/09

  5. 2020 IEEE SMC Society/Andrew P. Sage Best Transactions Paper Award

    Xiaokang Zhou, Wei Liang, Kevin Wang, Shohei Shimizu IEEE Systems, Man, and Cybernetics Society 2020/11

  6. 滋賀大学 教育実践優秀賞

    清水昌平 2020/10

  7. 滋賀大学 学長賞

    清水昌平 2019/03

  8. 日本行動計量学会 杉山明子賞 (出版賞)

    清水昌平 日本行動計量学会 2018/09

  9. Hayashi Chikio Award (Excellence Award)

    2016/09/01

  10. Best Student First Author Theory Paper Award. International Conference on Independent Component Analysis and Blind Signal Separation (ICA2006)

    S.Shimizu 2006/03

Papers 91

  1. Causal models and prediction in cell line perturbation experiments.

    James P. Long, Yumeng Yang, Shohei Shimizu, Thong Pham, Kim-Anh Do

    BMC Bioinform. Vol. 26 No. 1 p. 4-4 2025/12 Research paper (scientific journal)

  2. Density Ratio-based Causal Discovery from Bivariate Continuous-Discrete Data.

    Takashi Nicholas Maeda, Shohei Shimizu, Hidetoshi Matsui

    CoRR Vol. abs/2505.08371 2025/05 Research paper (scientific journal)

  3. Causal Additive Models with Unobserved Causal Paths and Backdoor Paths.

    Thong Pham, Takashi Nicholas Maeda, Shohei Shimizu

    CoRR Vol. abs/2502.07646 2025/02 Research paper (scientific journal)

  4. Novel MITM attack scheme based on built-in negotiation for blockchain-based digital twins.

    Xin Liu 0050, Rui Zhou 0005, Shohei Shimizu, Rui Chong, Qingguo Zhou, Xiaokang Zhou

    Digit. Commun. Networks Vol. 11 No. 1 p. 256-267 2025 Research paper (scientific journal)

  5. Integrating Large Language Models in Causal Discovery: A Statistical Causal Approach.

    Masayuki Takayama, Tadahisa Okuda, Thong Pham, Tatsuyoshi Ikenoue, Shingo Fukuma, Shohei Shimizu, Akiyoshi Sannai

    Trans. Mach. Learn. Res. Vol. 2025 2025 Research paper (scientific journal)

  6. Multi-Domain and Multi-View Oriented Deep Neural Network for Sentiment Analysis in Large Language Models

    Keito Inoshita, Xiaokang Zhou, Shohei Shimizu

    2024 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics p. 149-156 2024/08/19 Research paper (international conference proceedings)

    Publisher: IEEE
  7. Use of Prior Knowledge to Discover Causal Additive Models with Unobserved Variables and its Application to Time Series Data.

    Takashi Nicholas Maeda, Shohei Shimizu

    Behaviormetrika 2024/08 Research paper (scientific journal)

  8. Does Financial Literacy Impact Investment Participation and Retirement Planning in Japan?

    Yi Jiang, Shohei Shimizu

    2024/05/02

  9. Causal-discovery-based root-cause analysis and its application in time-series prediction error diagnosis.

    Hiroshi Yokoyama, Ryusei Shingaki, Kaneharu Nishino, Shohei Shimizu, Thong Pham

    CoRR Vol. abs/2411.06990 2024 Research paper (scientific journal)

  10. Counterfactual Explanations of Black-box Machine Learning Models using Causal Discovery with Applications to Credit Rating.

    Daisuke Takahashi, Shohei Shimizu, Takuma Tanaka

    International Joint Conference on Neural Networks(IJCNN) p. 1-8 2024 Research paper (international conference proceedings)

    Publisher: IEEE
  11. Causal-learn: Causal Discovery in Python.

    Yujia Zheng 0001, Biwei Huang, Wei Chen 0103, Joseph D. Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter Spirtes, Kun Zhang 0001

    Journal of Machine Learning Research Vol. 25 p. 60-8 2024 Research paper (scientific journal)

  12. Special issue: recent developments in causal inference and machine learning vol.2

    Shohei Shimizu, Shuichi Kawano

    Behaviormetrika Vol. 51 No. 1 p. 497-498 2024/01 Research paper (scientific journal)

  13. Scalable Counterfactual Distribution Estimation in Multivariate Causal Models.

    Thong Pham, Shohei Shimizu, Hideitsu Hino, Tam Le

    CLeaR Vol. 236 p. 1118-1140 2024 Research paper (international conference proceedings)

  14. Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks.

    Xiaokang Zhou, Xuzhe Zheng, Xuesong Cui, Jiashuai Shi, Wei Liang 0006, Zheng Yan 0002, Laurence T. Yang, Shohei Shimizu, Kevin I-Kai Wang

    IEEE Journal of Selected Areas in Communications Vol. 41 No. 10 p. 3191-3211 2023/10 Research paper (scientific journal)

  15. Hierarchical Federated Learning With Social Context Clustering-Based Participant Selection for Internet of Medical Things Applications.

    Xiaokang Zhou, Xiaozhou Ye, Kevin I-Kai Wang, Wei Liang 0006, Nirmal-Kumar C. Nair, Shohei Shimizu, Zheng Yan 0002, Qun Jin

    IEEE Transactions on Computational Social Systems Vol. 10 No. 4 p. 1742-1751 2023/08 Research paper (scientific journal)

  16. Nonlinear Causal Discovery for High-Dimensional Deterministic Data.

    Yan Zeng 0002, Zhifeng Hao, Ruichu Cai, Feng Xie 0002, Libo Huang, Shohei Shimizu

    IEEE Transactions on Neural Networks and Learning Systems Vol. 34 No. 5 p. 2234-2245 2023/05 Research paper (scientific journal)

  17. Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization

    Xiaokang Zhou, Xuzhe Zheng, Tian Shu, Wei Liang, Kevin I.Kai Wang, Lianyong Qi, Shohei Shimizu, Qun Jin

    IEEE Transactions on Neural Networks and Learning Systems 2023 Research paper (scientific journal)

  18. The KDD'23 Workshop on Causal Discovery, Prediction and Decision, 07 August 2023, Long Beach, CA, USA

    CDPD Vol. 218 2023 Research paper (international conference proceedings)

    Publisher: PMLR
  19. BiLSTM and VAE Enhanced Multi-Task Neural Network for Trust-Aware E-Commerce Product Analysis.

    Shusuke Wani, Xiaokang Zhou, Shohei Shimizu

    TrustCom p. 780-787 2023 Research paper (international conference proceedings)

  20. Preface: The 2023 ACM SIGKDD Workshop on Causal Discovery, Prediction and Decision.

    Thuc Duy Le, Jiuyong Li, Robert Ness, Sofia Triantafillou, Shohei Shimizu, Peng Cui 0001, Kun Kuang, Jian Pei, Fei Wang 0001, Mattia Prosperi

    CDPD Vol. 218 p. 1-2 2023 Research paper (international conference proceedings)

  21. Causal Discovery for Non-stationary Non-linear Time Series Data Using Just-In-Time Modeling.

    Daigo Fujiwara, Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani, Shohei Shimizu

    CLeaR Vol. 213 p. 880-894 2023 Research paper (international conference proceedings)

  22. Structure Learning for Groups of Variables in Nonlinear Time-Series Data with Location-Scale Noise.

    Genta Kikuchi, Shohei Shimizu

    CAWS Vol. 223 p. 20-39 2023 Research paper (international conference proceedings)

  23. Linkages among the Foreign Exchange, Stock, and Bond Markets in Japan and the United States.

    Yi Jiang, Shohei Shimizu

    CAWS Vol. 223 p. 1-19 2023 Research paper (international conference proceedings)

  24. Prospects of Continual Causality for Industrial Applications.

    Daigo Fujiwara, Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani, Shohei Shimizu

    AAAI Bridge Program Vol. 208 p. 18-24 2023 Research paper (international conference proceedings)

  25. Python package for causal discovery based on LiNGAM.

    Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, Shohei Shimizu

    Journal of Machine Learning Research Vol. 24 p. 14-8 2023 Research paper (scientific journal)

  26. Special issue: Recent developments in causal inference and machine learning

    Shohei Shimizu, Shuichi Kawano

    Behaviormetrika Vol. 49 No. 2 p. 275-276 2022/07 Research paper (scientific journal)

  27. Chemical-Mediated Microbial Interactions Can Reduce the Effectiveness of Time-Series-Based Inference of Ecological Interaction Networks

    Kenta Suzuki, Masato S. Abe, Daiki Kumakura, Shinji Nakaoka, Fuki Fujiwara, Hirokuni Miyamoto, Teruno Nakaguma, Mashiro Okada, Kengo Sakurai, Shohei Shimizu, Hiroyoshi Iwata, Hiroshi Masuya, Naoto Nihei, Yasunori Ichihashi

    International Journal of Environmental Research and Public Health Vol. 19 No. 3 2022/02 Research paper (scientific journal)

  28. CNN-GRU Based Deep Learning Model for Demand Forecast in Retail Industry.

    Kazuhi Honjo, Xiaokang Zhou, Shohei Shimizu

    International Joint Conference on Neural Networks(IJCNN) Vol. 2022-July p. 1-8 2022 Research paper (international conference proceedings)

    Publisher: IEEE
  29. Causal Discovery for Linear Mixed Data.

    Yan Zeng, Shohei Shimizu, Hidetoshi Matsui, Fuchun Sun

    1st Conference on Causal Learning and Reasoning(CLeaR) Vol. 177 p. 994-1009 2022 Research paper (international conference proceedings)

    Publisher: PMLR
  30. A Multivariate Causal Discovery based on Post-Nonlinear Model.

    Kento Uemura, Takuya Takagi, Kambayashi Takayuki, Hiroyuki Yoshida, Shohei Shimizu

    1st Conference on Causal Learning and Reasoning(CLeaR) Vol. 177 p. 826-839 2022 Research paper (international conference proceedings)

    Publisher: PMLR
  31. Intelligent Small Object Detection for Digital Twin in Smart Manufacturing With Industrial Cyber-Physical Systems.

    Xiaokang Zhou, Xuesong Xu, Wei Liang, Zhi Zeng, Shohei Shimizu, Laurence T. Yang, Qun Jin

    IEEE Transactions on Industrial Informatics Vol. 18 No. 2 p. 1377-1386 2022 Research paper (scientific journal)

  32. Hierarchical Adversarial Attacks Against Graph-Neural-Network-Based IoT Network Intrusion Detection System.

    Xiaokang Zhou, Wei Liang, Weimin Li, Ke Yan, Shohei Shimizu, Kevin I-Kai Wang

    IEEE Internet Things J. Vol. 9 No. 12 p. 9310-9319 2022 Research paper (scientific journal)

  33. Repetitive causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders.

    Takashi Nicholas Maeda, Shohei Shimizu

    Int. J. Data Sci. Anal. Vol. 13 No. 2 p. 77-89 2022 Research paper (scientific journal)

  34. Estimating individual-level optimal causal interventions combining causal models and machine learning models.

    Keisuke Kiritoshi, Tomonori Izumitani, Kazuki Koyama, Tomomi Okawachi, Keisuke Asahara, Shohei Shimizu

    The KDD 2021 Workshop on Causal Discovery(CD@KDD) Vol. 150 p. 55-77 2021 Research paper (international conference proceedings)

    Publisher: PMLR
  35. Causal Discovery with Multi-Domain LiNGAM for Latent Factors.

    Yan Zeng, Shohei Shimizu, Ruichu Cai, Feng Xie, Michio Yamamoto, Zhifeng Hao

    Causal Analysis Workshop Series(CAWS) Vol. 160 p. 1-4 2021 Research paper (conference, symposium, etc.)

    Publisher: PMLR
  36. Discovery of Causal Additive Models in the Presence of Unobserved Variables.

    Takashi Nicholas Maeda, Shohei Shimizu

    CoRR Vol. abs/2106.02234 2021 Research paper (scientific journal)

  37. Causal additive models with unobserved variables.

    Takashi Nicholas Maeda, Shohei Shimizu

    UAI Vol. 161 p. 97-106 2021 Research paper (international conference proceedings)

    Publisher: AUAI Press
  38. Causal Discovery with Multi-Domain LiNGAM for Latent Factors.

    Yan Zeng, Shohei Shimizu, Ruichu Cai, Feng Xie, Michio Yamamoto, Zhifeng Hao

    Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence(IJCAI) Vol. abs/2009.09176 p. 2097-2103 2021 Research paper (international conference proceedings)

    Publisher: ijcai.org
  39. Intelligent Small Object Detection Based on Digital Twinning for Smart Manufacturing in Industrial CPS

    Xiaokang Zhou, Xuesong Xu, Wei Liang, Zhi Zeng, Shohei Shimizu, Laurence T. Yang, Qun Jin

    IEEE Transactions on Industrial Informatics p. 1-1 2021 Research paper (scientific journal)

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  40. Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in Industrial Cyber-Physical Systems

    Xiaokang Zhou, Wei Liang, Shohei Shimizu, Jianhua Ma, Qun Jin

    IEEE Transactions on Industrial Informatics Vol. 17 No. 8 p. 5790-5798 2020/12/31 Research paper (scientific journal)

  41. Estimation of post-nonlinear causal models using autoencoding structure

    K. Uemura, S. Shimizu

    Proc. 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP2020) Vol. 2020-May p. 3312-3316 2020/05 Research paper (international conference proceedings)

    Publisher: IEEE
  42. RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders

    T. N. Maeda, S. Shimizu

    JMLR Workshop and Conference Proceedings, AISTATS2020 (Proc. 23rd International Conference on Artificial Intelligence and Statistics) Vol. 108 p. 735-745 2020/05 Research paper (scientific journal)

    Publisher: PMLR
  43. B4SDC: A Blockchain System for Security Data Collection in MANETs,

    Gao Liu, Huidong Dong, Zheng Yan, Xiaokang Zhou, Shohei Shimizu

    IEEE Transactions on Big Data Vol. 8 No. 3 p. 739-752 2020/03 Research paper (scientific journal)

  44. Causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders.

    Takashi Nicholas Maeda, Shohei Shimizu

    CoRR Vol. abs/2001.04197 2020 Research paper (scientific journal)

  45. Multi-Modality Behavioral Influence Analysis for Personalized Recommendations in Health Social Media Environment

    X. Zhou, W. Liang, I. Kevin, K. Wang, S. Shimizu

    IEEE Transactions on Computational Social Systems Vol. 6 No. 5 p. 888-897 2019/10/07 Research paper (scientific journal)

  46. Analysis of cause-effect inference by comparing regression errors

    Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf

    PeerJ Computer Science Vol. 5 No. 1 p. 900-169 2019/01/21 Research paper (scientific journal)

    Publisher: PMLR
  47. Personalization recommendation algorithm based on trust correlation degree and matrix factorization

    Weimin Li, Xiaokang Zhou, Shohei Shimizu, Mingjun Xin, Jiulei Jiang, Honghao Gao, Qun Jin

    IEEE Access Vol. 7 p. 45451-45459 2019/01/01 Research paper (scientific journal)

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  48. A novel personalized recommendation algorithm based on trust relevancy degree

    Weimin Li, Heng Zhu, Xiaokang Zhou, Shohei Shimizu, Mingjun Xin, Qun Jin

    Proc. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech) p. 418-422 2018/08 Research paper (international conference proceedings)

    Publisher: IEEE Computer Society
  49. A novel principle for causal inference in data with small error variance

    Patrick Bloebaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schoelkopf

    JMLR Workshop and Conference Proceedings, AISTATS2018 (Proc. 21st International Conference on Artificial Intelligence and Statistics) Vol. 84 p. 900-909 2018/04 Research paper (international conference proceedings)

  50. Cause-Effect Inference by Comparing Regression Errors.

    Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf

    International Conference on Artificial Intelligence and Statistics(AISTATS) Vol. 84 p. 900-909 2018 Research paper (international conference proceedings)

    Publisher: PMLR
  51. Analysis of Cause-Effect Inference via Regression Errors.

    Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf

    CoRR Vol. abs/1802.06698 2018 Research paper (scientific journal)

  52. Combining Linear Non-Gaussian Acyclic Model with Logistic Regression Model for Estimating Causal Structure from Mixed Continuous and Discrete Data.

    Chao Li, Shohei Shimizu

    CoRR Vol. abs/1802.05889 2018 Research paper (scientific journal)

  53. Learning instrumental variables with structural and non-Gaussianity assumptions

    Ricardo Silva, Shohei Shimizu

    Journal of Machine Learning Research Vol. 18 p. 1-49 2017/11/17 Research paper (scientific journal)

  54. Estimation of interventional effects of features on prediction

    Patrick Blobaum, Shohei Shimizu

    Proc. 2017 IEEE Machine Learning for Signal Processing Workshop (MLSP2017) Vol. 1 p. 1-6 2017/09 Research paper (international conference proceedings)

    Publisher: IEEE
  55. Error asymmetry in causal and anticausal regression

    Patrick Blobaum, Takashi Washio, Shohei Shimizu

    Behaviormetrika Vol. abs/1610.03263 No. 2 p. 491-512 2017/04 Research paper (scientific journal)

  56. A novel principle for causal inference in data with small error variance

    Patrick Blobaum, Shohei Shimizu, Takashi Washio

    Proc. 25 th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN2017) Vol. 1 p. 347-352 2017/04 Research paper (international conference proceedings)

  57. Special feature: recent developments in causal discovery and inference

    Shohei Shimizu

    Behaviormetrika Vol. 44 No. 1 p. 135-136 2017/01/01 Research paper (scientific journal)

  58. Visualizing Shiga Prefecture using RESAS: cloud-based analysis system with government open big data

    Jong chan Lee, Tetsuto Himeno, Shohei Shimizu, Takuma Tanaka, Akimichi Takemura

    Proc. 2nd International Conference on Big Data, Cloud Computing, and Data Science (BCD2017) 2017 Research paper (international conference proceedings)

  59. A Non-Gaussian Approach for Causal Discovery in the Presence of Hidden Common Causes.

    Shohei Shimizu

    Advanced Methodologies for Bayesian Networks - Second International Workshop(AMBN@JSAI-isAI) Vol. 9505 p. 222-233 2015 Research paper (international conference proceedings)

    Publisher: Springer
  60. Discriminative and generative models in causal and anticausal settings

    Patrick Blöbaum, Shohei Shimizu, Takashi Washio

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 9505 p. 209-221 2015 Research paper (international conference proceedings)

    Publisher: Springer Verlag
  61. Bayesian Estimation of Causal Direction in Acyclic Structural Equation Models with Individual-specific Confounder Variables and Non-Gaussian Distributions

    Shohei Shimizu, Kenneth Bollen

    JOURNAL OF MACHINE LEARNING RESEARCH Vol. 15 No. 1 p. 2629-2652 2014/08 Research paper (scientific journal)

  62. A direct method for estimating a causal ordering in a linear non-Gaussian acyclic model.

    Shohei Shimizu, Aapo Hyvärinen, Yoshinobu Kawahara

    CoRR Vol. abs/1408.2038 2014 Research paper (scientific journal)

  63. Causal Discovery in a Binary Exclusive-or Skew Acyclic Model: BExSAM.

    Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara

    CoRR Vol. abs/1401.5636 2014 Research paper (scientific journal)

  64. ESTIMATION OF CAUSAL STRUCTURES IN LONGITUDINAL DATA USING NON-GAUSSIANITY

    Kento Kadowaki, Shohei Shimizu, Takashi Washio

    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) p. 1-6 2013 Research paper (international conference proceedings)

  65. Discovery of non-gaussian linear causal models using ICA

    Shohei Shimizu, Aapo Hyvärinen, Yutaka Kano, Patrik O. Hoyer

    CoRR Vol. abs/1207.1413 2012 Research paper (scientific journal)

  66. Causal discovery of linear acyclic models with arbitrary distributions

    Patrik O. Hoyer, Aapo Hyvärinen, Richard Scheines, Peter Spirtes, Joseph D. Ramsey, Gustavo Lacerda, Shohei Shimizu

    CoRR Vol. abs/1206.3260 2012 Research paper (scientific journal)

  67. Discovering causal structures in binary exclusive-or skew acyclic models

    Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara

    CoRR Vol. abs/1202.3736 p. 373-382 2012 Research paper (scientific journal)

    Publisher: AUAI Press
  68. Estimation of causal orders in a linear non-Gaussian acyclic model: A method robust against latent confounders

    Tatsuya Tashiro, Shohei Shimizu, Aapo Hyvärinen, Takashi Washio

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 7552 No. 1 p. 491-498 2012 Research paper (international conference proceedings)

    Publisher: Springer
  69. Bootstrap confidence intervals in DirectLiNGAM

    Kittitat Thamvitayakul, Shohei Shimizu, Tsuyoshi Ueno, Takashi Washio, Tatsuya Tashiro

    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012) p. 659-668 2012 Research paper (international conference proceedings)

  70. Analyzing relationships among ARMA processes based on non-Gaussianity of external influences

    Yoshinobu Kawahara, Shohei Shimizu, Takashi Washio

    NEUROCOMPUTING Vol. 74 No. 12-13 p. 2212-2221 2011/06 Research paper (scientific journal)

  71. DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model

    Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvarinen, Yoshinobu Kawahara, Takashi Washio, Patrik O. Hoyer, Kenneth Bollen

    JOURNAL OF MACHINE LEARNING RESEARCH Vol. 12 p. 1225-1248 2011/04 Research paper (scientific journal)

  72. Estimating exogenous variables in data with more variables than observations.

    Yasuhiro Sogawa, Shohei Shimizu, Teppei Shimamura, Aapo Hyvärinen, Takashi Washio, Seiya Imoto

    Neural Networks Vol. 24 No. 8 p. 875-880 2011 Research paper (scientific journal)

  73. Discovering causal structures in binary exclusive-or skew acyclic models.

    Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara

    UAI 2011(UAI) p. 373-382 2011 Research paper (international conference proceedings)

    Publisher: AUAI Press
  74. Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity

    Aapo Hyvarinen, Kun Zhang, Shohei Shimizu, Patrik O. Hoyer

    JOURNAL OF MACHINE LEARNING RESEARCH Vol. 11 p. 1709-1731 2010/05 Research paper (scientific journal)

  75. Discovery of Exogenous Variables in Data with More Variables Than Observations.

    Yasuhiro Sogawa, Shohei Shimizu, Aapo Hyvärinen, Takashi Washio, Teppei Shimamura, Seiya Imoto

    Artificial Neural Networks - ICANN 2010 - 20th International Conference Vol. 6352 LNCS No. PART 1 p. 67-76 2010 Research paper (international conference proceedings)

    Publisher: Springer
  76. GroupLiNGAM: Linear non-Gaussian acyclic models for sets of variables

    Yoshinobu Kawahara, Kenneth Bollen, Shohei Shimizu, Takashi Washio

    CoRR Vol. abs/1006.5041 2010 Research paper (scientific journal)

  77. Assessing Statistical Reliability of LiNGAM via Multiscale Bootstrap

    Yusuke Komatsu, Shohei Shimizu, Hidetoshi Shimodaira

    ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III Vol. 6354 No. PART 3 p. 309-314 2010 Research paper (international conference proceedings)

  78. An experimental comparison of linear non-Gaussian causal discovery methods and their variants

    Yasuhiro Sogawa, Shohei Shimizu, Yoshinobu Kawahara, Takashi Washio

    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 p. 1-8 2010 Research paper (international conference proceedings)

  79. Use of Prior Knowledge in a Non-Gaussian Method for Learning Linear Structural Equation Models

    Takanori Inazumi, Shohei Shimizu, Takashi Washio

    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION Vol. 6365 p. 221-228 2010 Research paper (international conference proceedings)

  80. Estimation of linear non-Gaussian acyclic models for latent factors.

    Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen

    Neurocomputing Vol. 72 No. 7-9 p. 2024-2027 2009 Research paper (scientific journal)

  81. Estimation of causal effects using linear non-Gaussian causal models with hidden variables

    Patrik O. Hoyer, Shohei Shimizu, Antti J. Kerminen, Markus Palviainen

    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING Vol. 49 No. 2 p. 362-378 2008/10 Research paper (scientific journal)

  82. Causal discovery of linear acyclic models with arbitrary distributions.

    Patrik O. Hoyer, Aapo Hyvärinen, Richard Scheines, Peter Spirtes, Joseph D. Ramsey, Gustavo Lacerda, Shohei Shimizu

    UAI 2008(UAI) p. 282-289 2008 Research paper (international conference proceedings)

    Publisher: AUAI Press
  83. Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity.

    Aapo Hyvärinen, Shohei Shimizu, Patrik O. Hoyer

    Machine Learning(ICML) p. 424-431 2008 Research paper (international conference proceedings)

    Publisher: ACM
  84. Discovery of linear non-gaussian acyclic models in the presence of latent classes

    Shohei Shimizu, Aapo Hyvärinen

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 4984 No. 1 p. 752-761 2008 Research paper (international conference proceedings)

    Publisher: Springer
  85. A linear non-Gaussian acyclic model for causal discovery

    Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvarinen, Antti Kerminen

    JOURNAL OF MACHINE LEARNING RESEARCH Vol. 7 p. 2003-2030 2006/10 Research paper (scientific journal)

  86. A linear non-gaussian acyclic model for causal discovery

    Shimizu, S., Hoyer, P.O., Hyv{\"a}rinen, A., Kerminen, A.

    Journal of Machine Learning Research Vol. 7 2006 Research paper (scientific journal)

  87. Estimation of linear, non-gaussian causal models in the presence of confounding latent variables

    Patrik O. Hoyer, Shohei Shimizu, Antti J. Kerminen

    CoRR Vol. abs/cs/0603038 2006 Research paper (scientific journal)

  88. Estimation of linear, non-gaussian causal models in the presence of confounding latent variables.

    Patrik O. Hoyer, Shohei Shimizu, Antti J. Kerminen

    Third European Workshop on Probabilistic Graphical Models p. 155-162 2006 Research paper (international conference proceedings)

  89. Testing Significance of Mixing and Demixing Coefficients in ICA.

    Shohei Shimizu, Aapo Hyvärinen, Yutaka Kano, Patrik O. Hoyer, Antti J. Kerminen

    Independent Component Analysis and Blind Signal Separation(ICA) Vol. 3889 LNCS p. 901-908 2006 Research paper (international conference proceedings)

    Publisher: Springer
  90. New Permutation Algorithms for Causal Discovery Using ICA.

    Patrik O. Hoyer, Shohei Shimizu, Aapo Hyvärinen, Yutaka Kano, Antti J. Kerminen

    Independent Component Analysis and Blind Signal Separation(ICA) Vol. 3889 LNCS p. 115-122 2006 Research paper (international conference proceedings)

    Publisher: Springer
  91. A quasi-stochastic gradient algorithm for variance-dependent component analysis

    Aapo Hyvarinen, Shohei Shimizu

    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2 Vol. 4132 p. 211-220 2006 Research paper (scientific journal)

Misc. 91

  1. Optimization and control applications through repeated interventions based on structural causal models

    FUJIWARA Daigo, IZUMITANI Tomonori, SHIMIZU Shohei

    Proceedings of the Annual Conference of JSAI Vol. JSAI2024 p. 4Xin231-4Xin231 2024

    Publisher: The Japanese Society for Artificial Intelligence
  2. 大学別の博士課程進学等に関するデータセットの構築と統計的因果探索

    高山, 正行, 小松, 尚登, ファム, テ トン, 前田, 高志ニコラス, 三内, 顕義, 小柴, 等, 清水, 昌平

    年次学術大会講演要旨集 Vol. 38 p. 874-879 2023/10/28

    Publisher: 研究・イノベーション学会
  3. 大規模言語モデルを活用した博士課程進学に関する因果探索の試行

    高山, 正行, 小柴, 等, 三内, 顕義, 清水, 昌平

    年次学術大会講演要旨集 Vol. 38 p. 880-885 2023/10/28

    Publisher: 研究・イノベーション学会
  4. 統計的因果探索アルゴリズム“LiNGAM” を活用した専攻分野別の博士課程進学に関する研究

    高山, 正行, 小柴, 等, 前田, 高志 ニコラス, 三内, 顕義, 清水, 昌平, 星野, 利彦

    年次学術大会講演要旨集 Vol. 37 p. 192-197 2022/10/29

    Publisher: 研究・イノベーション学会
  5. 博士課程進学率に関する因果モデルの構築

    高山 正行, 小柴 等, 前田 高志ニコラス, 三内 顕義, 清水 昌平, 星野 利彦

    Jxiv 2022/03 Internal/External technical report, pre-print, etc.

  6. Educational Goals and Achievements of Undergraduate and Graduate Programs of Data Science in Shiga University

    DATE Heiwa, SHIMIZU Shohei, TAKEMURA Akimichi

    Journal of JSEE Vol. 70 No. 1 p. 1_7-1_12 2022

    Publisher: Japanese Society for Engineering Education
  7. 統計的因果探索アルゴリズム“LiNGAM” を用いた若手研究者支援政策に関する研究

    高山, 正行, 小柴, 等, 前田, 高志, 三内, 顕義, 清水, 昌平, 星野, 利彦

    年次学術大会講演要旨集 Vol. 36 p. 758-763 2021/10/30

    Publisher: 研究・イノベーション学会
  8. EBPM と統計的因果探索・数理モデルの利活用

    高山, 正行, 小柴, 等, 前田, 高志, 三内, 顕義, 清水, 昌平, 星野, 利彦

    年次学術大会講演要旨集 Vol. 36 p. 752-757 2021/10/30

    Publisher: 研究・イノベーション学会
  9. セミパラメトリックアプローチによる統計的因果探索

    清水 昌平

    人工知能学会研究会資料 人工知能基本問題研究会 Vol. 118 p. 02-02 2021

    Publisher: 一般社団法人 人工知能学会
  10. Recent advances in semi-parametric methods for causal discovery

    Shohei Shimizu, Patrick Blöbaum

    Direction Dependence in Statistical Modeling: Methods of Analysis p. 111-130 2020/12

  11. A survey on integrity auditing for data storage in the cloud: from single copy to multiple replicas

    Angtai Li, Yu Chen, Zheng Yan, Xiaokang Zhou, Shohei Shimizu

    IEEE Transactions on Big Data Vol. 8 No. 5 p. 1428-1442 2020/10/07

  12. Introduction to statistical causal inference

    Mathematical Science Vol. 58 No. 9 p. 7-14 2020/09 Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)

    Publisher: Saiensu sha
  13. Privacy preservation in permissionless blockchain: A survey

    Li Peng, Wei Feng, Zheng Yan, Yafeng Li, Xiaokang Zhou, Shohei Shimizu

    Digital Communications and Networks Vol. 7 No. 3 p. 295-307 2020/07

  14. Estimation of interventinal effect on prediction models for time series data

    KIRITOSHI Keisuke, KUREBAYASHI Wataru, IZUMITANI Tomonori, KOYAMA Kazuki, KIMURA Daichi, OKAWACHI Tomomi, SHIMIZU Shohei

    Proceedings of the Annual Conference of JSAI Vol. JSAI2020 p. 1J4GS204-1J4GS204 2020

    Publisher: The Japanese Society for Artificial Intelligence
  15. データサイエンスのモデル教材開発の取組み—特集 AI時代の人材育成

    清水 昌平

    大学教育と情報 Vol. 2019年度 No. 2 p. 10-12 2019/09

    Publisher: 東京 : 私立大学情報教育協会
  16. Non-Gaussian Methods for Causal Structure Learning

    Shohei Shimizu

    Prevention Science Vol. 20 No. 3 p. 431-441 2019/05/22 Article, review, commentary, editorial, etc. (scientific journal)

  17. 私の「研究」履歴書

    清水, 昌平

    Data Science View, Shiga University = Data Science View, Shiga University Vol. Vol.2 p. 5-5 2018/05

    Publisher: 滋賀大学データサイエンス教育研究センター
  18. 因果探索への招待

    清水 昌平

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報 Vol. 117 No. 354 p. 19-24 2017/12

    Publisher: 東京 : 電子情報通信学会
  19. Non-Gaussian structural equation models for causal discovery

    Shohei Shimizu

    Statistics and Causality: Methods for Applied Empirical Research p. 153-184 2016/06/07

  20. Learning Instrumental Variables with Non-Gaussianity Assumptions: Theoretical Limitations and Practical Algorithms

    Ricardo Silva, Shohei Shimizu

    2015/11/10 Internal/External technical report, pre-print, etc.

  21. RFO3-1 徹底討論・統計的因果推論 : データだけから因果を言えるのか? 3つのアプローチから(ラウンドテーブル・ディスカッション 徹底討論・統計的因果推論データだけから因果を言えるのか? 3つのアプローチから)

    星野 崇宏, 黒木 学, 清水 昌平

    日本行動計量学会大会抄録集 Vol. 43 p. 162-163 2015/09/01

    Publisher: 日本行動計量学会
  22. A Bayesian estimation approach to analyze non-Gaussian data-generating process with latent classes

    田中 直樹, 清水 昌平, 鷲尾 隆

    人工知能基本問題研究会 Vol. 95 p. 27-31 2014/10/10

    Publisher: 人工知能学会
  23. 潜在クラスが存在する場合のベイズ的アプローチによる非ガウス困果構造推定法

    TANAKA NAOKI, SHIMIZU SHOHEI, WASHIO TAKASHI

    人工知能学会人工知能基本問題研究会資料 Vol. 95th p. 27-31 2014/10/06

  24. A Bayesian estimation approach to analyze non-Gaussian data-generating processes with latent classes

    Naoki Tanaka, Shohei Shimizu, Takashi Washio

    2014/08/02 Internal/External technical report, pre-print, etc.

  25. 連続データと離散データの間の因果関係の同定

    SUZUKI YUZURU, SHIMIZU SHOHEI, WASHIO TAKASHI

    人工知能学会人工知能基本問題研究会資料 Vol. 94th p. 35-40 2014/07/24

    Publisher: 人工知能学会
  26. Causal Discovery between Discrete and Continuous Variables

    鈴木 譲, 清水 昌平, 鷲尾 隆

    人工知能基本問題研究会 Vol. 94 p. 35-40 2014/07/24

    Publisher: 人工知能学会
  27. Identifiability of an Integer Modular Acyclic Additive Noise Model and its Causal Structure Discovery

    Joe Suzuki, Takanori Inazumi, Takashi Washio, Shohei Shimizu

    2014/01/22 Internal/External technical report, pre-print, etc.

  28. ParceLiNGAM: A Causal Ordering Method Robust Against Latent Confounders

    Tatsuya Tashiro, Shohei Shimizu, Aapo Hyvarinen, Takashi Washio

    NEURAL COMPUTATION Vol. 26 No. 1 p. 57-83 2014/01

  29. A Bayesian estimation approach for analyzing non-Gaussian data generating processes when there are latent classes

    田中 直樹, 清水 昌平, 鷲尾 隆

    人工知能学会全国大会論文集 Vol. 28 p. 1-4 2014

    Publisher: 人工知能学会
  30. Bayesian estimation of possible causal direction in the presence of latent confounders using a linear non-Gaussian acyclic structural equation model with individual-specific effects

    Shohei Shimizu, Kenneth Bollen

    2013/10/25 Internal/External technical report, pre-print, etc.

  31. Preface to the first IEEE ICDM workshop on causal discovery

    Jiuyong Li, Kun Zhang, Jian Pei, Lin Liu, Laiwan Chan, Zhi Geng, Aapo Hyvärinen, Antti Hyttinen, Dominik Janzing, Samantha Kleinberg, Yan Liu, Zeng-Hua Lu, Zudi Lu, Marloes Maathuis, Joris Mooij Radboud, Shohei Shimizu, Ricardo Silva, Bingyu Sun, Ioannis Tsamardinos, Jiji Zhang

    Proceedings - IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013 p. xxiv-xxv 2013

    Publisher: IEEE Computer Society
  32. Learning causal structure of longitudinal data with a use of non-Gaussianity

    門脇 健人, 清水 昌平, 鷲尾 隆

    人工知能学会全国大会論文集 Vol. 27 p. 1-4 2013

    Publisher: 人工知能学会
  33. A Bayesian estimation approach for analyzing non-Gaussian data generating processes when there are latent confounding variables

    田中 直樹, 清水 昌平, 鷲尾 隆

    人工知能学会全国大会論文集 Vol. 27 p. 1-4 2013

    Publisher: 人工知能学会
  34. トクシュウ 「 ベイジアンネットワーク ト ソノ オウヨウ 」 オヨビ イッパン

    Vol. 87 p. 19-24 2012/11/17

    Publisher: 人工知能学会
  35. Learning LiNGAM based on data with more variables than observations

    Shohei Shimizu

    2012/08/21 Internal/External technical report, pre-print, etc.

  36. 非ガウス性を用いた線形非巡回なデータ生成過程部分の発見と同定

    TASHIRO TATSUYA, SHIMIZU SHOHEI, WASHIO TAKASHI

    人工知能学会全国大会論文集(CD-ROM) Vol. 26th p. ROMBUNNO.4B1-R-2-6-4 2012

    Publisher: 人工知能学会
  37. Bootstrapping confidence intervals in linear non-Gaussian causal model (人工知能学会全国大会(第26回)文化,科学技術と未来) -- (機械学習)

    Thamvitayakul Kittitat, 清水 昌平, 鷲尾 隆

    人工知能学会全国大会論文集 Vol. 26 p. 1-3 2012

    Publisher: 人工知能学会
  38. Detection and identi cation of a linear acyclic data generating process part by using non-Gaussianity of data

    田代 竜也, 清水 昌平, 鷲尾 隆

    人工知能学会全国大会論文集 Vol. 26 p. 1-4 2012

    Publisher: 人工知能学会
  39. 関数モデル上の統計的因果推論研究の現状

    WASHIO TAKASHI, INAZUMI TAKANORI, SHIMIZU SHOHEI, SUZUKI JO, YAMAMOTO AKIHIRO, KAWAHARA YOSHINOBU

    人工知能学会人工知能基本問題研究会資料 Vol. 83rd p. 63-70 2011/11/18

    Publisher: 人工知能学会
  40. State-of-the-art Statistical Causal Inference on Functional Models

    鷲尾 隆, 稲積 孝紀, 清水 昌平

    人工知能基本問題研究会 Vol. 83 p. 63-70 2011/11/18

    Publisher: 人工知能学会
  41. 離散データの因果の同定~2値から,多値への一般化について

    SUZUKI YUZURU, SHIMIZU SHOHEI, WASHIO TAKASHI

    電子情報通信学会技術研究報告 Vol. 111 No. 275(IBISML2011 42-86) p. 207-212 2011/11/02

    Publisher: 東京 : 電子情報通信学会
  42. A Method for Estimating Binary Data Generating Process

    INAZUMI Takanori, WASHIO Takashi, SHIMIZU Shohei, SUZUKI Joe, YAMAMOTO Akihiro, KAWAHARA Yoshinobu

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning Vol. 111 No. 275 p. 155-162 2011/11/02

    Publisher: 東京 : 電子情報通信学会
  43. A Method for Estimating Binary Data Generating Process

    INAZUMI Takanori, WASHIO Takashi, SHIMIZU Shohei, SUZUKI Joe, YAMAMOTO Akihiro, KAWAHARA Yoshinobu

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 Vol. 111 No. 275 p. 155-162 2011/11/02

    Publisher: 一般社団法人電子情報通信学会
  44. 離散データの因果の同定 : 2値から、多値への一般化について(ポスターセッション,第14回情報論的学習理論ワークショップ)

    鈴木 譲, 清水 昌平, 鷲尾 隆

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 Vol. 111 No. 275 p. 207-212 2011/11/02

    Publisher: 一般社団法人電子情報通信学会
  45. Joint estimation of linear non-Gaussian acyclic models

    Shohei Shimizu

    Neurocomputing Vol. 81 p. 104-107 2011/04/28

  46. Analyzing relationships between CTARMA and ARMA models

    Demeshko Marina

    Proceedings of the Annual Conference of JSAI Vol. JSAI2011 p. 2G22-2G22 2011

    Publisher: The Japanese Society for Artificial Intelligence
  47. Analyzing data generating processes using a non-Gaussian ARMA model of stationary time series

    田代 竜也, 清水 昌平, 河原 吉伸

    人工知能学会全国大会論文集 Vol. 25 p. 1-4 2011

    Publisher: 人工知能学会
  48. Experimental evaluation of a method to estimate the data generating process of a binary variable causal model

    稲積 孝紀, 鷲尾 隆, 清水 昌平

    人工知能学会全国大会論文集 Vol. 25 p. 1-4 2011

    Publisher: 人工知能学会
  49. ブートストラップ確率の計算誤差を修正するためのマルチスケール・ブートストラップ法:LiNGAM因果構造推定の場合

    KOMATSU YUSUKE, SHIMODAIRA HIDETOSHI, SHIMIZU SHOHEI

    統計関連学会連合大会講演報告集 Vol. 2010 2010/09

  50. 高次元確率空間における高精度期待値ベイズ推定の検討

    MATSUDA SHUJI, HON NGUYEN HA, WASHIO TAKASHI, KAWAHARA YOSHINOBU, SHIMIZU SHOHEI, INOKUCHI AKIHIRO

    人工知能学会全国大会論文集(CD-ROM) Vol. 24th p. ROMBUNNO.1A1-4-4 2010

    Publisher: 人工知能学会
  51. Use of prior knowledge in a non-Gaussian method for causal structure learning

    稲積 孝紀, 十河 泰弘, 清水 昌平

    人工知能学会全国大会論文集 Vol. 24 p. 1-4 2010

    Publisher: 人工知能学会
  52. Issues of statistical large scale causal inference and its challenge based on non-Gaussianity

    鷲尾 隆, 清水 昌平, 河原 吉伸

    人工知能基本問題研究会 Vol. 75 p. 33-36 2009/11/13

    Publisher: 人工知能学会
  53. 統計的大規模因果推論の課題と非ガウス性に基づく挑戦

    WASHIO TAKASHI, SHIMIZU SHOHEI, KAWAHARA YOSHINOBU, INOKUCHI AKIHIRO

    人工知能学会人工知能基本問題研究会資料 Vol. 75th p. 33-36 2009/11/06

  54. Computing p-values of LiNGAM outputs via Multiscale Bootstrap

    Yusuke Komatsu, Shohei Shimizu, Hidetoshi Shimodaira

    2009/09/16 Internal/External technical report, pre-print, etc.

  55. マルチスケール・ブートストラップを用いた信頼度計算:LiNGAMによる因果モデル探索の場合

    KOMATSU YUSUKE, SHIMIZU SHOHEI, SHIMODAIRA HIDETOSHI

    統計関連学会連合大会講演報告集 Vol. 2009 2009/09

  56. A direct method for estimating a causal ordering in a linear non-Gaussian acyclic model

    SHIMIZU Shohei

    Proc. of UAI2009 : The 25th Conference on Uncertainty in Artificial Intelligence, Causality II & Graphical Models p. 506-513 2009

    Publisher: AUAI Press
  57. Identification of exogenously expressed genes by applying independent component analysis

    十河 泰弘, 清水 昌平, 鷲尾 隆

    人工知能学会全国大会論文集 Vol. 23 p. 1-4 2009

    Publisher: 人工知能学会
  58. Use of non-normality in structural equation modeling: Application to direction of causation

    Shohei Shimizu, Yutaka Kana

    JOURNAL OF STATISTICAL PLANNING AND INFERENCE Vol. 138 No. 11 p. 3483-3491 2008/11

  59. 大規模変数次元小標本データにおける外生変数の探索と独立成分分析

    SHIMIZU SHOHEI, WASHIO TAKASHI, HYVAERINEN AAPO, IMOTO SEIYA

    統計関連学会連合大会講演報告集 Vol. 2008 2008/09

  60. Learning linear acyclic models using independent component analysis

    SHIMIZU SHOHEI

    日本統計学会誌 Vol. 37 No. 2 p. 223-237 2008/03

  61. Learning linear acyclic models using independent component analysis(<Special Section> in Commemoration of the 75th Anniversary of the Japan Statistical Society (II))

    Shimizu Shohei

    Journal of the Japan Statistical Society Japanese issue Vol. 37 No. 2 p. 223-237 2008/03

    Publisher: 一般社団法人日本統計学会
  62. 独立成分分析と線形逐次モデルの探索

    SHIMIZU SHOHEI

    統計関連学会連合大会講演報告集 Vol. 2007 2007/09

  63. Finding a causal ordering via independent component analysis

    S Shimizu, A Hyvarinen, PO Hoyer, Y Kano

    COMPUTATIONAL STATISTICS & DATA ANALYSIS Vol. 50 No. 11 p. 3278-3293 2006/07

  64. Finding a causal ordering via independent component analysis

    S Shimizu, A Hyvarinen, PO Hoyer, Y Kano

    COMPUTATIONAL STATISTICS & DATA ANALYSIS Vol. 50 No. 11 p. 3278-3293 2006/07

  65. A generalized least squares approach to blind separation of sources which have variance dependencies

    Shohei Shimizu, Aapo Hyvarinen, Yutaka Kano

    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2 Vol. 2005 p. 1009-1012 2005

  66. Discovery of Non-gaussian Linear Causal Models using ICA

    SHIMIZU Shohei

    Proc. of UAI2005 : The 21st Conference on Uncertainty in Artificial Intelligence, Causality II & Graphical Models Vol. 526-533 p. 525-533 2005

    Publisher: AUAI Press
  67. Discovery of non-gaussian linear causal models using ICA (jointly worked)

    Proc. the 21st Conference on Uncertainty in Artificial Intelligence (UAI-2005), Edinburgh, UK Vol. 526-533 2005

  68. A generalized least squares approach to blind separation of sources which have variance dependencies

    Shohei Shimizu, Aapo Hyvarinen, Yutaka Kano

    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2 p. 1009-1012 2005

  69. 構造方程式モデリングにおける非正規性の利用(<一般セッション4>構造方程式モデル)(第31回 日本行動計量学会大会発表一覧)

    清水 昌平, 狩野 裕

    行動計量学 Vol. 31 No. 2 p. 142-142 2004/09/10

    Publisher: 日本行動計量学会
  70. 情報処理教育におけるコンピュータ不安の分析 : 構造方程式モデリングによる因果推論と非正規性(<一般セッション4>構造方程式モデル)(第31回 日本行動計量学会大会発表一覧)

    鳥居 稔, 清水 昌平, 狩野 裕

    行動計量学 Vol. 31 No. 2 p. 142-143 2004/09/10

    Publisher: 日本行動計量学会
  71. ICAと非正規因子分析(原標題は英語)

    KANO YUTAKA, SHIMIZU SHOHEI

    統計関連学会連合大会講演報告集 Vol. 2004 p. 103-104 2004/09/03

  72. Nonnormal structural equation modeling

    清水 昌平, 狩野 裕

    日本行動計量学会大会発表論文抄録集 Vol. 32 p. 10-13 2004/09

    Publisher: 日本行動計量学会
  73. 慢性に経過した上腸間膜静脈閉塞症による多発性大腸潰瘍の1例(セッション3,II.一般演題,第35回消化器病センター例会,学術情報)

    今井 隆二郎, 清水 昌平, 松本 健史, 飯塚 愛子

    東京女子医科大学雑誌 Vol. 74 No. 4 p. 236-236 2004/04

    Publisher: 東京女子医科大学
  74. G8-2 構造のある独立成分分析 : 調査データへの適用可能性(一般セッション(G8) : 因子分析とICAテキストマイニング)(第30回日本行動計量学会大会発表一覧)

    清水 昌平, 宮本 友介, 狩野 裕

    行動計量学 Vol. 30 No. 2 p. 235-235 2004/01/30

    Publisher: 日本行動計量学会
  75. G8-3 Analysis of Web access data with ICA

    宮本 友介, 清水 昌平, 西川 康子, 狩野 裕

    The Japanese Journal of Behaviormetrics Vol. 30 No. 2 p. 235-235 2004/01/30

    Publisher: 日本行動計量学会
  76. Independent component analysis and its application to causal analysis (jointly worked)

    Proceedings of the Factor Analysis Centennial Symposium Vol. 121-138 2004

  77. Independent component analysis and its application to causal analysis (jointly worked)

    Proceedings of the Factor Analysis Centennial Symposium Vol. 121-138 2004

  78. A-2 独立成分分析における検証的アプローチ(コンペティション(2))(2003年度統計関連学会連合大会記録(日本統計学会第71回大会))

    清水 昌平, 狩野 裕

    日本統計学会誌 Vol. 33 No. 3 p. 387-388 2003/12

    Publisher: 一般社団法人日本統計学会
  79. E-2 正規ノイズのある独立成分分析と非正規因子分析(主成分とクラスター)(2003年度統計関連学会連合大会記録(日本統計学会第71回大会))

    宮本 友介, 狩野 裕, 清水 昌平

    日本統計学会誌 Vol. 33 No. 3 p. 411-412 2003/12

    Publisher: 一般社団法人日本統計学会
  80. 構造方程式モデリングにおける非正規性の利用

    清水 昌平, 狩野 裕

    日本行動計量学会大会発表論文抄録集 Vol. 31 p. 138-141 2003/09/03

    Publisher: 日本行動計量学会
  81. 情報処理教育におけるコンピュータ不安の分析 : 構造方程式モデリングによる因果推論と非正規性

    鳥居 稔, 清水 昌平, 狩野 裕

    日本行動計量学会大会発表論文抄録集 Vol. 31 p. 142-145 2003/09/03

    Publisher: 日本行動計量学会
  82. 正規ノイズのある独立成分分析と非正規因子分析

    MIYAMOTO YUSUKE, KANO YUTAKA, SHIMIZU SHOHEI

    統計関連学会連合大会講演報告集 Vol. 2003 p. 423-424 2003/09/01

  83. 独立成分分析における検証的アプローチ

    SHIMIZU SHOHEI, KANO YUTAKA

    統計関連学会連合大会講演報告集 Vol. 2003 p. 63-64 2003/09/01

  84. Causal inference using non-normality

    KANO Y.

    Proceedings of the International Symposium on Science of Modeling, the 30th Anniversary of the Information Criterion, Tokyo, Japan, 2003 Vol. 261-270 2003

  85. Factor rotation and ICA (jointly worked)

    Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Signal Separation p. 101-105 2003

  86. Examination of independence in independent component analysis

    S Shimizu, Y Kano

    NEW DEVELOPMENTS IN PSYCHOMETRICS p. 665-672 2003

  87. Causal inference using nonnormality (jointly worked)

    Proceedings of the International Symposium on Science of modeling -The 30th Anniversary of the Information Criterion (AIC)- Vol. 261-270 2003

  88. Factor rotation and ICA (jointly worked)

    Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Signal Separation p. 101-105 2003

  89. Examination of independence in independent component analysis (jointly worked)

    New developments in Psychometrics, Springer, Verlag p. 665-672 2003

  90. 構造のある独立成分分析 : 調査データへの適用可能性(因子分析とICA)

    清水 昌平, 宮本 友介, 狩野 裕

    日本行動計量学会大会発表論文抄録集 Vol. 30 p. 204-207 2002/08

    Publisher: 日本行動計量学会
  91. Analysis of Web access data with ICA(因子分析とICA)

    宮本 友介, 清水 昌平, 西川 康子, 狩野 裕

    日本行動計量学会大会発表論文抄録集 Vol. 30 p. 208-211 2002/08

    Publisher: 日本行動計量学会

Publications 6

  1. Statistical causal discovery : LiNGAM approach

    清水, 昌平

    Springer 2022

    ISBN: 9784431557838

  2. テキスト・画像・音声データ分析

    西川, 仁, 佐藤, 智和, 市川, 治, 清水, 昌平, 講談社サイエンティフィク

    講談社 2020/05

    ISBN: 9784065188040

  3. データサイエンスのための数学

    椎名, 洋, 姫野, 哲人, 保科, 架風, 清水, 昌平, 講談社サイエンティフィク

    講談社 2019/08

    ISBN: 9784065169988

  4. 人工知能学大事典

    人工知能学会, 清水昌平

    共立出版 2017/07/08 Dictionary, encyclopedia

  5. 統計的因果探索

    清水 昌平

    講談社 2017/05 Scholarly book

    ISBN: 9784061529250

  6. Probabilistic graphical models

    Joe Suzuki, Maomi Ueno, Manabu Kuroki, Shohei Shimizu, Shin-ichi Minato, Masakazu Ishihata, YOSHIYUKI KABASHIMA, Kazuyuki Tanaka, Yoichi Motomura, Yoshinori Tamada

    KYORITSU SHUPPAN CO., LTD. 2016/07 Scholarly book

    ISBN: 9784320111394

Presentations 30

  1. 統計的因果推論と機械学習: データ駆動による因果仮説探索

    清水昌平

    JST 科学技術未来戦略ワークショップ「人工知能と科学」 2021/01

  2. Linear non-Gaussian models with latent variables for causal discovery

    Shohei Shimizu

    The 2020 NeurIPS Workshop on Causal Discovery and Causality-Inspired Machine Learning 2020/12

  3. 因果探索という道具

    清水昌平

    一般社団法人データサイエンティスト協会 7thシンポジウム 2020/11

  4. Statistical Estimation of Gene Regulatory Network

    Y. Imoto, Y. Hiraoka, S. Shimizu, T. Nicolas Maeda, Y. Kojima, M. Saitou

    JSPS Core-to-Core Program “Establishing International Research Network of Mathematical Oncology” 2020/10

  5. Linear non-Gaussian models with latent variables for causal discovery

    Shohei Shimizu

    The 2020 Pacific Causal Inference Conference 2020/09

  6. データ駆動による因果仮説探索

    清水昌平

    JST 研究開発戦略センター(CRDS)俯瞰セミナーシリーズ「機械学習と科学」 2020/08

  7. 時系列データに対する予測モデルの介入効果の推定

    切通恵介, 紅林亘, 泉谷知範, 小山和輝, 木村大地, 大川内智海, 清水昌平

    第34回人工知能学会全国大会 2020/06

  8. 統計的因果探索への招待

    清水昌平

    超先端材料超高速開発基盤技術プロジェクト研究セミナー 2020/02/21

  9. 統計的因果探索に基づく遺伝子制御ネットワークの推定

    井元佑介, 平岡裕章, 清水昌平, 前田高志ニコラス, 小島洋児, 斎藤通紀

    応用数学合同研究集会2019 2019/12/14

  10. Causal discovery based on non-Gaussianity of data and its applications

    S. Shimizu

    日本行動計量学会 第47回大会, 大阪. 特別セッション: 「Causal inference and cyclic models」 2019/09

  11. 因果探索、予測、そして制御

    清水昌平

    2018年度 統計関連学会連合大会 2018/09/12

  12. Causal discovery, prediction mechanisms, and control

    Shohei Shimizu

    The 5th meeting of the Institute of Mathematical Statistics (IMS) meeting series, the IMS Asia Pacific Rim Meeting (IMS-APRM) 2018/06/26

  13. Causal discovery, prediction, and control

    Shohei Shimizu

    Causal Modeling and Machine Learning (CaMaL) Workshop 2018/06/08

  14. 局所データモデリング法に基づく力場パラメータ最適化プログラムの開発

    高柳昌芳, 清水昌平, 長岡正隆

    第21回理論化学討論会 2018/05/15

  15. 因果探索入門

    清水昌平

    日本行動計量学会 第20回春の合宿セミナー 2018/02/28

  16. 因果探索への招待

    清水 昌平

    電子情報通信学会IA(インターネットアーキテクチャ)/IN(情報ネットワーク)併催研究会 2017/12/14

  17. 機械学習による因果仮説探索

    清水 昌平

    メディカルデータサイエンス人材育成プログラム キックオフシンポジウム「健康医療イノベーションにおける観察研究の意義と活⽤」 2017/11/20

  18. Causal discovery and prediction mechanisms

    Shohei Shimizu

    France/Japan Machine Learning Workshop 2017/09/21

  19. 因果推論入門-因果構造探索を中心に-

    清水 昌平

    情報処理学会 連続セミナー2017 「イノベーション最前線: 2020年を超えて生き抜くための技術を探る」 第2回「人工知能の基盤技術」 2017/07/27

  20. 統計的因果推論への招待 - 因果構造探索を中心に

    清水 昌平

    システム制御情報学会・計測自動制御学会 チュートリアル講座2017 2017/07/14

  21. Basics of Causal Structure Learning

    Shohei Shimizu

    Basics of Causal Inference 2017/02/16

  22. Causal analysis of Marketing data

    The 100th workshop of Japan Institute of Marketing Science 2016/11/26

  23. A non-Gaussian approach for causal structure learning in the presence of hidden common causes

    Shohei Shimizu

    CRM Workshop: Statistical Causal Inference and its Applications to Genetics 2016/07/25

  24. A non-Gaussian model for causal discovery in the presence of hidden common causes

    Shohei Shimizu

    Munich Workshop on Causal Inference and Information Theory 2016/05/23

  25. Non-Gaussian structural equation models for causal discovery

    Shohei Shimizu

    2016 Probabilistic Graphical Model Workshop: Sparsity, Structure and High-dimensionality 2016/03/23

  26. 因果探索: 基本から最近の発展までを概説

    清水 昌平

    第23回情報論的学習理論と機械学習研究会 (IBISML) 2016/03/17

  27. Causal discovery

    Shohei Shimizu

    The 3rd Methodology Seminar of the Japanese Society of Social Psychology 2016/03/16

  28. Causal discovery and non-Gaussianity

    Shohei Shimizu

    Computational Science and Visual Analytics 2016/03/01

  29. Statistical estimation of causal directions based on observational data

    Shohei Shimizu

    The 3rd CiNet Conference - Neural Mechanism of Decision Making: Achievements and New Directions 2016/02/03

  30. Non-Gaussian methods for causal discovery

    Shohei Shimizu

    International Workshop on Causal Inference 2016/01/06

Works 1

  1. データサイエンス入門シリーズ(講談社)の編集委員

    2017/09 - Present

Industrial Property Rights 1

  1. 品質劣化要因推定装置及び方法

    石橋圭介, 清水昌平, 田代竜也

    5825599

Social Activities 15

  • 数理・データサイエンス教育拠点コンソーシアム 教材分科会 委員 (主査)

    2018/02 - Present

  • SCREENアドバンストシステムソリューションズ

    2020/11 - 2021/10

  • 株式会社神戸製鋼所

    2020/07 - 2021/03

  • 日本製鐵

    2019/04 - 2021/03

  • SCREENアドバンストシステムソリューションズ 技術指導

    2019/07 - 2020/06

  • 株式会社神戸製鋼所

    2019/07 - 2020/03

  • ソニーセミコンダクタマニュファクチャリング株式会社と共同研究

    2019/02 - 2020/03

  • エヌ・ティ・ティ・コミュニケーションズ株式会社

    2018/12 - 2020/03

  • キリン株式会社 基盤技術研究所へ技術指導

    2018/12 - 2019/12

  • ロックオン株式会社

    2019/05 - 2019/07

  • SCREENアドバンストシステムソリューションズへ技術指導

    2018/07 - 2019/06

  • 新日鐵住金へ学術指導

    2018/04 - 2019/03

  • 陵水会大阪支部総会における講演

    2017/07 -

  • 滋賀県の統計相談における助言

    2017/06 -

  • 滋賀県の統計相談における助言

    2016/12 -