Research History 2
-
2022/10 - PresentOsaka University Graduate School of Engineering Science
-
2020/04 - 2022/10日本電信電話株式会社 コミュニケーション科学基礎研究所 研究員
東京大学大学院 新領域創成科学研究科 複雑理工学専攻
- 2020/03
電子情報通信学会 情報論的学習理論と機械学習研究専門委員会 Academic society
2022/06 - Present
日本統計学会
電子通信情報学会
Informatics / Statistical science /
Epistemic Uncertainty and Excess Risk in Variational Inference.
Futoshi Futami
AISTATS p. 568-576 2025 Research paper (international conference proceedings)
On the Convergence of SVGD in KL divergence via Approximate gradient flow.
Masahiro Fujisawa, Futoshi Futami
Trans. Mach. Learn. Res. Vol. 2025 2025 Research paper (scientific journal)
Information-theoretic Generalization Analysis for Expected Calibration Error.
Futoshi Futami, Masahiro Fujisawa
NeurIPS 2024 Research paper (international conference proceedings)
Information-theoretic Analysis of Bayesian Test Data Sensitivity.
Futoshi Futami, Tomoharu Iwata
AISTATS p. 1099-1107 2024 Research paper (international conference proceedings)
Publisher: PMLRTime-Independent Information-Theoretic Generalization Bounds for SGLD.
Futoshi Futami, Masahiro Fujisawa
NeurIPS 2023 Research paper (international conference proceedings)
Predictive variational Bayesian inference as risk-seeking optimization.
Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato, Masashi Sugiyama
International Conference on Artificial Intelligence and Statistics(AISTATS) p. 5051-5083 2022/03 Research paper (international conference proceedings)
Publisher: PMLRExcess risk analysis for epistemic uncertainty with application to variational inference.
Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato, Masashi Sugiyama
CoRR Vol. abs/2206.01606 2022 Research paper (scientific journal)
Loss function based second-order Jensen inequality and its application to particle variational inference.
Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato, Masashi Sugiyama
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021(NeurIPS) p. 6803-6815 2021/12 Research paper (international conference proceedings)
Scalable gradient matching based on state space Gaussian Processes.
Futoshi Futami
Asian Conference on Machine Learning(ACML) p. 769-784 2021/11 Research paper (international conference proceedings)
Publisher: PMLRSkew-symmetrically perturbed gradient flow for convex optimization.
Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Ikko Yamane
Asian Conference on Machine Learning(ACML) p. 721-736 2021/11 Research paper (international conference proceedings)
Publisher: PMLRAccelerated Diffusion-Based Sampling by the Non-Reversible Dynamics with Skew-Symmetric Matrices.
Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato
Entropy Vol. 23 No. 8 p. 993-993 2021/07 Research paper (scientific journal)
Accelerating the diffusion-based ensemble sampling by non-reversible dynamics.
Futoshi Futami, Issei Sato, Masashi Sugiyama
Proceedings of the 37th International Conference on Machine Learning(ICML) p. 3337-3347 2020/07 Research paper (international conference proceedings)
Publisher: PMLRTime-varying Gaussian Process Bandit Optimization with Non-constant Evaluation Time.
Hideaki Imamura, Nontawat Charoenphakdee, Futoshi Futami, Issei Sato, Junya Honda, Masashi Sugiyama
CoRR Vol. abs/2003.04691 2020 Research paper (scientific journal)
Bayesian Posterior Approximation via Greedy Particle Optimization.
Futoshi Futami, Zhenghang Cui, Issei Sato, Masashi Sugiyama
The Thirty-Third AAAI Conference on Artificial Intelligence(AAAI) p. 3606-3613 2019/01 Research paper (international conference proceedings)
Publisher: AAAI PressVariational Inference based on Robust Divergences.
Futoshi Futami, Issei Sato, Masashi Sugiyama
International Conference on Artificial Intelligence and Statistics(AISTATS) p. 813-822 2018/04 Research paper (international conference proceedings)
Publisher: PMLRExpectation Propagation for t-Exponential Family Using q-Algebra.
Futoshi Futami, Issei Sato, Masashi Sugiyama
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017(NIPS) p. 2245-2254 2017/12 Research paper (international conference proceedings)